

THE GOVERNMENT OF THE REPUBLIC OF MALAWI

MINISTRY OF AGRICULTURE IRRIGATION AND WATER DEVELOPMENT

SHIRE RIVER BASIN MANAGEMENT PROGRAMME (PHASE I) PROJECT

CLIMATE RESILIENT LIVELIHOODS AND SUSTAINABLE NATURAL RESOURCE MANAGEMENT IN THE ELEPHANT MARSH, MALAWI

Analysis of the potential effects of alternative future scenarios of flow and/or management on the ecological condition of the Elephant Marsh

Authors:

Brown, C.A., Birkhead, A.L., Reinecke, M.K., Joubert, A.R., Forsythe, K., Davies, T. and Turpie, J.K.

In Association with

November 2016

Table of contents

1		INTRO	DUCTION	. 1
	1.1	Backg	round to the study	1
	1.1	1.1	ToR for Synthesis Sub-task 2	. 2
	1.2	Ecosys	stem Functional Model (DRIFT)	2
	1.3	Study	team	4
	1.4	Repor	t layout	4
2		THE ST	UDY AREA	. 5
	2.1	Locati	on and extent	5
	2.2	Focus	areas for the assessment	6
	2.3	Gener	al morphology and functioning	8
	2.4	Histor	ical changes in the morphology and biodiversity of the Elephant Marsh	9
	2.5	Main t	threats to the functioning and biodiversity of the Elephant Marsh	11
3		Overv	/IEW OF THE DRIFT APPROACH	12
	3.1	The DI	RIFT DSS	12
	3.2	The DI	RIFT process	12
	3.3	The sp	pecialist workshop	14
	3.4	Benefi	its and limitations	15
	3.4	4.1	Benefits	15
	3.4	4.2	Limitations	15
4		Тне сс	DNCEPTUAL MODEL FOR THE ELEPHANT MARSH	17
	4.1	Indica	tors used	17
	4.2	Links a	and the conceptual model for the Elephant Marsh	21
5		DISCIP	LINE SPECIFIC EXPLANATIONS FOR INDICATORS AND LINKS	23
	5.1	Hydro	logy and hydraulics	23
	5.2	Geom	orphology	24
	5.2	2.1	Geomorphology indicators	24
	5.2	2.2	Linked indicators, response curves and motivations	24
	5.3	Vegeta	ation	28
	5.3	3.1	Vegetation indicators	30
	5.3	3.2	Linked indicators, response curves and motivations	34
	5.4	Aquat	ic invertebrates	38
	5.4	4.1	Invertebrates indicators	38
	5.4	4.2	Linked indicators, response curves and motivations	39
	5.5	Fish		41
	5.5	5.1	Fish indicators	41
	5.5	5.2	Linked indicators, response curves and motivations	42
	5.6	Herpe	tofauna	47
	5.6	5.1	Herpetofauna indicators	47
	5.6	6.2	Linked indicators, response curves and motivations	47

	5.7	Mammals		
	5.7	7.1	Mammal indicators	49
	5.7	7.2	Linked indicators, response curves and motivations	50
	5.8 Birds			52
	5.8	3.1	Bird indicators	52
	5.8	3.2	Linked indicators, response curves and motivations	53
	5.9	Mana	gement	57
	5.9	9.1	Management indicators	57
	5.9	9.2	Linked indicators, response curves and motivations	57
6		Εςοιο	GICAL STATUS	60
	6.1	Baseli	ne Ecological Status of the Elephant Marsh (2014)	60
	6.1	1.1	Vegetation	61
	6.1	1.2	Aquatic invertebrates	61
	6.1	1.3	Fish	61
	6.1	1.4	Herpetofauna	62
	6.1	1.5	Mammals	62
	6.1	1.6	Birds	62
	6.2	Calcul	ations of predicted Ecological Integrity (Condition) of the Elephant Marsh	62
	6.2	2.1	Discipline and focus area integrities	63
	6.2	2.2	Whole Marsh	64
7		SELECT	ION AND EVALUATION OF SCENARIOS	65
	7.1	Scena	rio selection process	65
	7.2	Scena	rios evaluated in this report	66
	7.2	2.1	Depth time-series for the scenarios	68
	7.3	Criteri	a used to define "ecological tipping point"	70
8		Scena	RIO OUTCOMES	71
	8.1	The in	nplications of the flow only scenarios, i.e., changes in Shire River hydrology, on Mai	rsh
	veget	tation .		72
	8.2	The in	plications of changes in incoming sediment flows on Marsh geomorphology	79
	8.3	The in	nplications for ecosystem integrity and biodiversity of the Marsh on access restriction	ons
	and c	change	s in the human population alongside the Marsh	81
	8.4	Scena	rio-based implications for environmental services	86
9			USIONS AND POTENTIAL IMPLICATIONS FOR MANAGEMENT	88
1(כ	REFER	ENCES	90

List of figures

Figure 1.1	Sub-studies of the Climate resilient livelihoods and sustainable natural resources management in the Elephant Marsh Project
Figure 1.2	A typical DRIFT network of linked indicators (from Poonch River EFlows Assessment,
	Kashmir; Brown <i>et al.</i> 2017)
Figure 2.1	Location of the Elephant Marsh in Malawi, East Africa, on the Lower Shire River
Figure 2.2	The Elephant Marsh showing the local villages on its outer margins
Figure 2.3	Sub-division of the Elephant Marsh into five focus areas for the DRIFT assessment
Figure 2.4	Borassus aethiopum (African fan palm) on the Elephant Marsh c. 1859. These palm trees
	grow on the margins of marsh environs9
Figure 3.1	The DRIFT process
Figure 3.2	Schematic illustrating the concept of 'linked' indicators in DRIFT
Figure 3.3	Example of a DRIFT response curve
Figure 4.1	A simplified schematic of the links between the abiotic drivers (climate, hydraulics,
	geomorphology and management) and the knock-on links to biota, which comprise the
	Elephant Marsh conceptual model 21
Figure 4.2	Schematic showing the indicators and links in the DRIFT DSS used to conceptualise the
	functioning of the Elephant Marsh 22
Figure 5.1	Baseline daily hydrological time-series, 1976 - 2009 23
Figure 5.2	Vegetation types of the Elephant Marsh as at November 2014 29
Figure 5.3	Median inundation depth (± standard deviation) per vegetation type (types as per Table
	5.10) per site
Figure 5.4	Average of median inundation depth (\pm standard deviation) per vegetation type (types as
	per Table 5.10)
Figure 7.1	Base2014 scenario: Average depth in the channel (Northern focus area), 1976 - 200968
Figure 7.2	DryCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009 68
Figure 7.3	MidCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009 69
Figure 7.4	WetCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009 69
Figure 7.5	DevCC scenario: Average depth in the channel (Northern focus area), 1976 - 2009 69
Figure 7.6	DryDevCC scenario: Average depth in the channel (Northern focus area), 1976 - 2009 70
Figure 8.1	Impacts on overall marsh vegetation condition (integrity) as a result of changes in the
	volume and pattern of water flows into the Marsh as per the four scenarios74
Figure 8.2	A 1999 LandSAT image of the Elephant Marshes, showing greater areas of cultivation
	than under Baseline 201476
Figure 8.3	Overall ecosystem integrity for the Elephant Marsh under different access restrictions 82
Figure 8.4	Uncertainty margins around severity scores used in DRIFT
Figure 8.5	Overall integrity for the focus areas under Base2014, B2014_1P_ESCRA_100S and
	DevCC_1P_ESCRA_100S

List of tables

Table 1.1	Project team members involved in Synthesis Sub-task 2 4
Table 3.1	DRIFT severity ratings and their associated abundances and losses - a negative score
	means a loss in abundance relative to baseline, a positive means a gain
Table 4.1	Hydraulic indicators
Table 4.2	Ecosystem indicators
Table 4.3	Management indicators 20
Table 5.1	Geomorphology indicators and their main driving variable in the Marsh
Table 5.2	Sediment retention: Linked indicators, response curves and motivations (Eastern) 25
Table 5.3	Turbidity: Linked indicators, response curves and motivations (Eastern)
Table 5.4	Channelisation: Linked indicators, response curves and motivations (Eastern)
Table 5.5	Change in flood extent: Linked indicators, response curves and motivations (Eastern) 27
Table 5.6	Sediment output: Linked indicators, response curves and motivations (Eastern)
Table 5.7	Sediment storage: Linked indicators, response curves and motivations (Eastern)
Table 5.8	Extent of mapped vegetation 'types' per site and for the Whole Marsh (green denotes
	the dominant vegetation type in each area)
Table 5.9	Vegetation indicators, representative species and their main links to water levels in the
	Marsh 30
Table 5.10	Grouping of vegetation indicators for calculating hydraulic relationships at floodplain and marsh areas
Table 5.11	Modelled and adjusted wet season depths of inundation for vegetation indicators 33
Table 5.12	Weights for composite vegetation indicators
Table 5.13	Area cultivated floodplain: Linked indicators, response curves and motivations (Central)
Table 5.14	Area uncultivated floodplain: Linked indicators, response curves and motivations (Central)
Table 5.15	Area reeds: Linked indicators, response curves and motivations (Central)
Table 5.16	Area papyrus: Linked indicators, response curves and motivations (Central)
Table 5.17	Area rooted aquatics: Linked indicators, response curves and motivations (Central) 37
Table 5.18	Area uncultivated channel margin: Linked indicators, response curves and motivations (Central)
Table 5.19	Invertebrate indicators, representative species and their main links to water levels in the Marsh
Table 5.20	Invertebrate community health: Linked indicators, response curves and motivations (Central)
Table 5.21	Invertebrate pests: Linked indicators, response curves and motivations (Central)
Table 5.22	Fish indicators, representative species and their main links to water levels in the Marsh
Table 5.23	Weights for composite fish indicators
Table 5.24	Floodplain migrant fish: Linked indicators, response curves and motivations (Central) 42
Table 5.25	River channel fish: Linked indicators, response curves and motivations (Central)
Table 5.26	Demersal fish: Linked indicators, response curves and motivations (Central) 45

Table 5.27	Channel margin fish: Linked indicators, response curves and motivations (Central) 46
Table 5.28	Herpetofauna indicators, representative species and their main links to water levels in
	the Marsh
Table 5.29	Crocodiles: Linked indicators, response curves and motivations (Central)
Table 5.30	Small reptiles: Linked indicators, response curves and motivations
Table 5.31	Amphibians: Linked indicators, response curves and motivations
Table 5.32	Mammal indicators, representative species and their main links to water levels in the
	Marsh
Table 5.33	Hippos: Linked indicators, response curves and motivations (Central) 51
Table 5.34	Small mammals: Linked indicators, response curves and motivations
Table 5.35	Bird indicators, representative species and their main links to water levels in the Marsh
Table 5.36	Weights for composite bird indicators
Table 5.37	African skimmer: Linked indicators, response curves and motivations (Whole Marsh) 53
Table 5.38	Cormorants: Linked indicators, response curves and motivations (Whole Marsh)
Table 5.39	Wading birds: Linked indicators, response curves and motivations (Whole Marsh) 55
Table 5.40	Water fowl: Linked indicators, response curves and motivations (Whole Marsh)
Table 5.41	Waders: Linked indicators, response curves and motivations (Whole Marsh)
Table 5.42	Gulls and terns: Linked indicators, response curves and motivations (Whole Marsh) 56
Table 5.43	Kingfishers: Linked indicators, response curves and motivations (Whole Marsh)
Table 5.44	Management indicators, representative species and their main links to water levels in
	the Marsh
Table 5.45	Access: Linked indicators, response curves and motivations (Southern)
Table 5.46	Fire: Linked indicators, response curves and motivations (Southern)
Table 5.47	Cultivation: Linked indicators, response curves and motivations (Southern)
Table 5.48	Harvesting pressure: Linked indicators, response curves and motivations (Southern) 59
Table 6.1	Categories for Baseline Ecological Status (after Kleynhans 1997)
Table 6.2	BES of the focus areas and the whole Elephant Marsh as at 2014. WM = Whole Marsh 60
Table 6.3	Weights applied to individual indicator scores when calculating Discipline and Focus Area
	integrities
Table 7.1	Scenarios evaluated in this report
Table 8.1	Median values for onset, duration and timing of the seasons in the Marsh and Seasonal
	Total Marsh area associated with each of the scenarios in each of the areas
Table 8.2	Percentage change in area of vegetation types relative to baseline at 100% associated
	with each of the scenarios in the focus areas – using the last 10 years of the record 77
Table 8.3	Area of vegetation types associated with each of the scenarios in the focus areas – using
	the last 10 years of the record
Table 8.4	Area (km ²) of vegetation types associated with each of the scenarios in the whole Marsh
	 using the last 10 years of the record
Table 8.5	Predicted change in geomorphology indicators relative to Base2014 under an 80%
	reduction in baseline sediment load (average percentages over the last 10 years) 80

- Table 8.8
 Scenario results for total area (km²) of each of the different vegetation types
 86

Acronyms

DEM	Digital Elevation Model
-----	-------------------------

- DoS Department of Surveys
- DRIFT Downstream Response to Imposed Flow Transformation
- DSS Decision Support System
- EM Elephant Marsh
- IDA International Development Agency
- SANSA South African National Space Agency
- SRBMP Shire River Basin Management Program

1 Introduction

1.1 Background to the study

The Government of Malawi received a credit and a grant from the International Development Agency (IDA – World Bank Group) to finance the implementation of the Shire River Basin Management Program (SRBMP), Phase I. The overall objective of the SRBMP is to enhance the sustainable social, economic and environmental benefits of the Shire Basin resources through effective and collaborative planning, development and management.

This project, **Climate resilient livelihoods and sustainable natural resources management in the Elephant Marsh**, falls under the umbrella of the SRBMP, and has three key objectives:

- 1) to improve understanding of the functional ecology of the Marshes;
- 2) to assess the feasibility of designating the marshes as a community-managed protected area and a Ramsar site, and;
- 3) to identify strategies and development options that would build the resilience of local communities to environmental change.

These objectives are being addressed in four sub-studies: Livelihoods, Hydromorphology, Ecosystem Services and Biodiversity, each with specific objectives, and linked through a Synthesis sub-study (Figure 1.1).

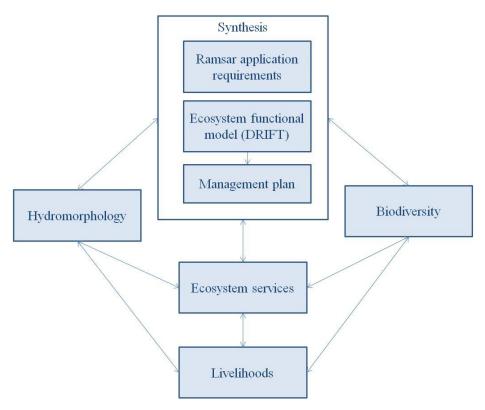


Figure 1.1 Sub-studies of the climate resilient livelihoods and sustainable natural resources management in the Elephant Marsh Project

The Synthesis sub-study is divided into three distinct areas (Figure 1.1), each with a specific objective:

- 1. Ramsar Application Requirements, which aims to determine the importance of the Elephant Marshes from a biodiversity perspective, inform decisions about its management and conservation, and to assess the merits of the Elephant Marsh as a Ramsar wetland;
- 2. Ecosystem Functional Model (DRIFT), which is required to explore the potential effects of alternative future scenarios of flow and/or management on the ecological condition of the Elephant Marsh, and;
- 3. Management report, which provides recommendations for the development of a Management Plan for the Elephant Marsh to meet a range of biodiversity-protection objectives set on the basis of the project as a whole.

This report is on the second of these, *viz*.: the ecosystem functional model (DRIFT).

1.1.1 ToR for Synthesis Sub-task 2

The second element of the synthesis sub-study is the use of the Ecosystem Functional Model (DRIFT) to bring together and interpret the findings of the ecological components of the sub-studies and to assess the likely responses to the provided change scenarios. The contributions of DRIFT to the synthesis study are arranged in six tasks:

- Task 1: DRIFT DSS;
- Task 2: Scenario construction;
- Task 3: Set up and adjustments to DRIFT;
- Task 4: Population and calibration of DRIFT;
- Task 5: Assess scenarios in DRIFT, and;
- Task 6: Summarise DRIFT results for synthesis report.

1.2 Ecosystem Functional Model (DRIFT)

The objective of the Ecosystem Functional Model (DRIFT) was to use the information generated in the Hydromorphology, Ecosystem Services and Biodiversity sub-studies to construct a DRIFT Decision Support System (DSS) that could be used to assess likely responses of the marsh ecosystem to scenarios of change in flow, sediment and livelihood pressures.

DRIFT (Brown *et al.* 2013) has been specifically developed for use in studies involving planning, development or management of inland aquatic ecosystems (e.g., King and Brown 2009). In the DRIFT-DSS a network of indicators is used to describe the aquatic ecosystem and its human users. Arrows that link indicators show the flow of cause-and-effect. In essence, the lines are the processes and the indicators represent the outcomes of the processes, with the network as a whole representing a simplified ecosystem model (Figure 1.2).

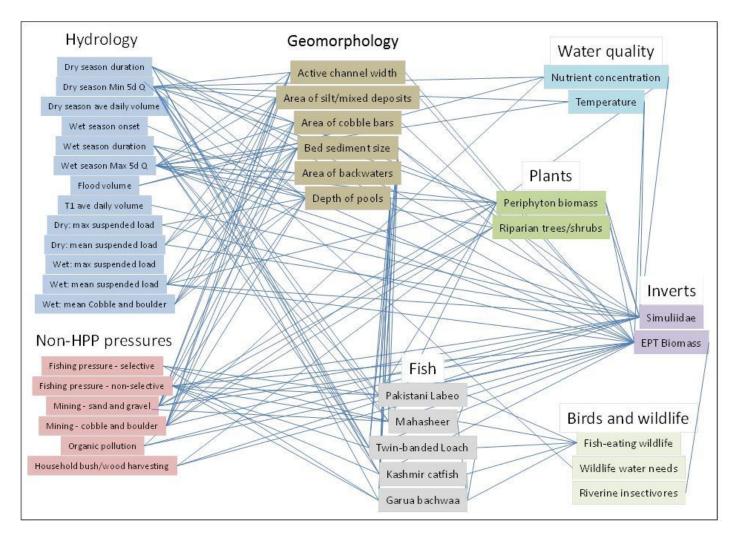


Figure 1.2 A typical DRIFT network of linked indicators (from Poonch River EFlows Assessment, Kashmir; Brown et al. 2017)

The indicators are used to describe:

- some aspect of the physical drivers of the ecosystem, such as water or sediment flow;
- a range of ecosystem attributes, and;
- a range of ecosystem-linked social attributes and pressures.

Once constructed the DSS can be used to describe how the ecosystem attributes would change under different flow and sediment regimes and/or levels of human utilization.

1.3 Study team

The project team members who were actively involved in the population of the DRIFT DSS and the construction and assessment of scenarios are listed in Table 1.1.

Name	Organisation	Role in project
Dr Cate Brown	Southern Waters	DRIFT process co-ordinator, geomorphology, management
Dr Alison Joubert	Southern Waters	DRIFT DSS manager, scenarios
Dr Andrew Birkhead	Steamflow Solutions	Hydrodynamic modelling, geomorphology
Dr Karl Reinecke	Southern Waters	Vegetation
Katherine Forsythe	Anchor Environmental	Invertebrates, amphibians, herpetofauna, mammals
Dr Tim Davies	MRag	Fish
Dr Jane Turpie	Anchor Environmental	Birds

Table 1.1 Project team members involved in Synthesis Sub-task 2

Also, some of the information used in the study was provided by:

- Robert Arthur (MRag). Selection of development and climate change scenario.
- Kevin Greaves (DHI). Provision of hydrological information of the baseline and scenarios.

1.4 Report layout

This report is structured with an introduction (Section 1), a description of the study area (Section 2), an overview of the DRIFT approach (Section 3), the conceptual model for the Elephant Marsh (Section 4), discipline specific explanations for indicators and links (Section 5), a description of the 2014 ecological condition of the Elephant Marsh (Section 6), selection (Section 7), and evaluation (Section 8) of scenarios; and conclusions and potential implications for management (Section 9).

2 The study area

2.1 Location and extent

The Elephant Marsh is a mosaic of rooted-swamp vegetation (sudd), floating vegetation and open water with grassy margins (Turpie *et al.* 2016). It lies in the floodplains of the Lower Shire River (S14°25′–17°50′ and E35°15′–35°15; Figure 2.1) in Malawi, East Africa (Figure 2.1). While size varies between wet and dry seasons, the Elephant Marsh is estimated to cover an area up to 600km2 (Birkhead et al., 2016).

The Marsh extends from the south eastern part of Illovo Sugar Estate at Chikwawa to the confluence of the Shire and Ruo Rivers near Chiromo (Figure 2.2).

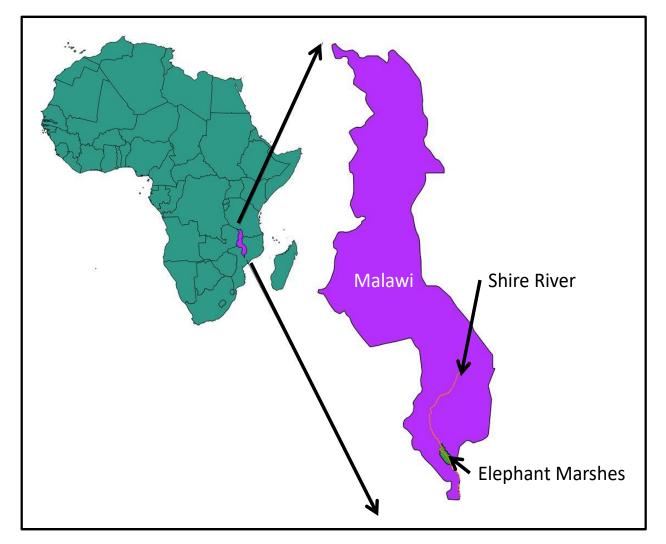


Figure 2.1 Location of the Elephant Marsh in Malawi, East Africa, on the Lower Shire River

Figure 2.2 The Elephant Marsh showing the local villages on its outer margins

Detail on the location, history, contemporary context, biodiversity and future threats to the Elephant Marsh is provided in other project reports, including Arthur *et al.* (2015); Birkhead *et al.* (2016) and Turpie *et al.* (2016).

2.2 Focus areas for the assessment

The Elephant Marsh comprises a diversity of aquatic and floodplain habitats and is utilised to different extents in different parts. For instance, the northern region of the marsh comprises the Shire River main channel and adjacent cultivated floodplain that is seasonally inundated, while the southern marsh regions are less cultivated being mostly perennially inundated lake and sudd (marsh reeds and papyrus). Thus, for the purposes of the DRIFT assessment, the marsh was sub-divided into five focus areas on the basis of vegetation type, hydromorphological influences, stage of transformation by cultivation, and priorities for fishing and/or harvesting of natural materials.

The five focus areas included in the assessment are (Figure 2.3):Northern~81.8 km²; characterised by the Shire River flowing into the marsh;Western~208.2 km²; characterised by cultivated fields;Eastern~128.2 km²; characterised by anastomosing and distributary channels;

- **Central** ~108.9 km²; characterised by distributary channels through predominantly indigenous marsh vegetation¹ but including some cultivated fields primarily along channel margins, and;
- **Southern** ~56.7 km²; characterised by open water lakes, marsh vegetation and some cultivated fields.

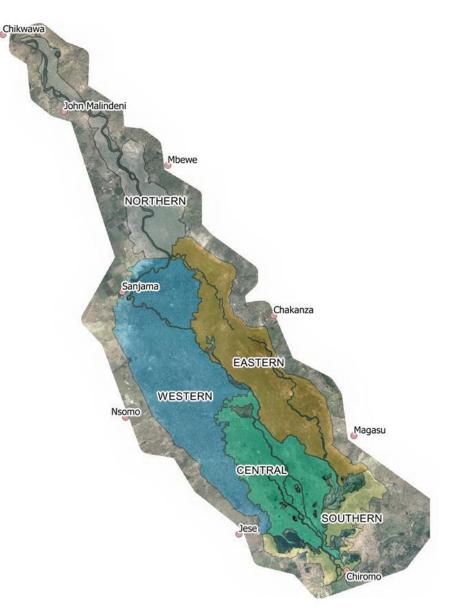


Figure 2.3 Sub-division of the Elephant Marsh into five focus areas for the DRIFT assessment

A sixth area, called 'Downstream', was also delineated, but not modelled.

These areas are described from the perspective of each discipline in Section 4.

¹ Marsh vegetation is found in perennial- or seasonally-inundated areas with slow flow that are well vegetated (Turpie *et al.* 2016).

2.3 General morphology and functioning

The Elephant Marsh is a floodplain wetland that responds to the water and sediment regimes of the Shire River. Floodplain wetlands experience short duration flooding at an annual or longer term frequency. The volume, timing and character of flow (and sediment transport) through the river, and the geological character and history of the landscape, create site specific fluctuations in surface and groundwater flow. This varied fluvial geomorphology of the marsh influences plant growth characteristics and results in extremely variable vegetation ranging from narrow riparian areas along anastomosing channels and dominated by grasses and sedges or trees and shrubs, to permanently inundated reed marshes and lakes, and broad seasonally-inundated floodplains and pans (Rogers 1995).

The channel in the Northern and Western focus areas meanders broadly before entering the anastomosing channels and distributaries of the Eastern and Central marsh. The channels are ~rectangular in cross-section, vary in width and depth at different points, and are stabilised by *Phragmites* spp., *Cyperus papyrus* and *Vossia cuspidata*. Flow through some channels discharges into marsh or lakes directly while some lakes are only connected to channels during the wet season. Flow also moves from the channels into the marsh through the permeable channel margins comprised of decomposed plant material. Bedload sediments are confined within the channels but suspended sediments are transmitted through the channel banks into the marsh areas.

As with other floodplain wetlands, sedimentation causes constant change in wetland structure as channels aggrade and scour in response to changes in flow and sediment regimes (McCarthy *et al.* 1986). Sedimentation processes may lead to a decline in flow velocity through direct channel aggradation, which may then be accompanied by secondary encroachment of papyrus from the channel margins into the channel (McCarthy *et al.* 1998). Encroaching papyrus rhizomes, culms and umbels further constrict the channel, forming a tangled debris mat (called a sudd) that breaks off and floats into the channel (Ellery *et al.* 1995). The growth of *Vossia cuspidata* is favoured in this situation and further constricts the channel, thus trapping debris mats and further enabling papyrus encroachment (McCarthy 1992). A debris dam may form that diverts flow beneath the blockage, scouring a new depression in the channel bed that will increase flow to the surrounding marsh around the failing channel, or into hippo trails that become enlarged and form new channels (Ellery *et al.* 2000).

This constantly changing mosaic of wetland habitats is typical of floodplain wetlands and means there is no temporally-fixed "template" over a reasonable (for data collection) time period for a marsh of this sort.

Effectively, the only constant is change.

2.4 Historical changes in the morphology and biodiversity of the Elephant Marsh

The morphology of the Elephant Marsh has undergone major transformations in the last 150 years or so². Birkhead *et al.* (2016) provide a summary of the history of the Elephant Marsh such as can be gleaned from the writing and recording of early (19th Century; Figure 2.4) travellers, and more recent records, reports and images that document the extensive changes that have occurred in the Marsh over time. For the purposes of understanding Marsh functioning and contextualising the implications of future changes on the Marsh, the most important of these are:

- periodic, and presumably natural, cessations of flows from Lake Malawi into the Shire River. For instance, low Shire River levels after 1896 made water transport more difficult and resulted in the construction of a railway from Nsanje to Mangochi, via Chiromo and Blantyre;
- the extensive influence of the Chiromo Bridge³, and its accompanying embankments, constructed as part of the above-mentioned railway, which was completed in 1907, and washed away in 1948; and its replacement, the three-span structure existing today, which was constructed in 1949;
- order of magnitude increases in sediment supply to the Marsh as a result of population pressures and severe land degradation in the Shire River Basin;
- the decimation of the large animal populations, such a hippos and elephants, from the Marsh, and;
- intense pressure on the natural resources as a result of a *c*. 3% per annum increase in people living adjacent to the Marsh (Kosamu *et al.* 2012). This has resulted in increased water abstraction, conversion of natural vegetation, sediment input, movement and deposition, as well as biodiversity losses. The resultant high turbidity also reduces the productivity of the littoral zone, smothers substrates, and reduces food source availability and fish visibility (which can affect hunting for many species; Turpie *et al.* 2016).

Figure 2.4 *Borassus aethiopum* (African fan palm) on the Elephant Marsh *c.* 1859. These palm trees grow on the margins of marsh environs.

² and possibly even greater changes over a longer period.

³ 400 ft: 10 spans with one opening section of 100 ft.

In one or other combination, the above-listed factors have led to past changes in the morphology of the Marsh that are unlikely to have reached a state of equilibrium and, as such, can be expected to trigger yet more changes into the future. These include but are not limited to:

- a reduction in the capacity, and eventual abandonment, of the western arm of the Shire River, which prior to the construction of the embankments and bridge was deep and wide enough to allow passage of small steamers;
- changes in the extent of the seasonally-inundated grassland habitat that characterizes the less-saturate portions of the Marsh to cultivated fields; coupled with the enormous harvesting pressure on vegetation, fish and other resources these are likely to have seriously reduced the abundance of natural flora and fauna, and reduced biodiversity in the Marsh⁴;
- loss of megafauna, especially hippopotamus (*Hippopotamus amphibius*) and elephant (*Loxodonta africana*), interactions with the environment that are essential for maintaining fish populations (e.g., Mosopele *et al.* 2009). Movement of these animals creates incised, vegetation-free pathways through which water can flow during flooding, diverting water and sediment into adjacent areas. These channels may become major river channels when the old channels fill with sand and avulse (McCarthy *et al.* 1998). These ever-changing channels and lagoons created by the actions of large mammals are major habitats for fish;
- incision of the Shire River channel feeding into the Marsh, and build-up of the adjacent floodplain areas, leading (very very slowly) to less flooding of adjacent areas;
- changes in the extent of Lake Bangula, Lake Tomoninjobi and other lakes in the southern portion of the Marsh linked to construction, and subsequent breaches and repairs, of the railway embankment;
- changes in the extent of papyrus and reed beds in the Southern portion of the Marsh linked to construction and subsequent breaches and repairs of the railway embankment, and;
- changes to the course of the Ruo River, mostly as a result of sedimentation at the confluence between the Shire and Ruo Rivers caused by a combination of increased sediment loads and reduce velocities as a result of the bridge and various breaches of the embankments.

As mentioned previously, these changes are ongoing, and can be expected to lead to other changes, such as, infilling of Tomoninjobi Lake as a result of the rerouting of the sediment-laden Ruo River.

While many of these changes are captured, to a greater or lesser extent, in the DRIFT assessments that are the subject of this report, some are not. In general, changes as a result of incremental functional wetland processes, such as erosion, deposition, harvesting of resources and changes in flows into the Marsh are captured in the DRIFT DSS. Changes as a result of sudden, relatively unpredictable events that change the hydromorphology of the Marsh, such as breaching (or repair) of the embankment and/or rerouting of major water ways, e.g., Ruo River, are not captured in the DSS. This is because the approach followed was to compile an "average" recent condition for the Marsh, largely driven by data availability, including (Birkhead *et al.* 2016):

• a range of historical maps and aerial photographs;

⁴ Note. These changes are not one-way. During the period when flows from Lake Malawi ceased, *c.* 1904-1916 (Mawell 1954), the extent of cultivated areas (c. 1915 to 1933) were greater than those recorded in 2015 (Richards 1954).

- RapidEye multispectral satellite imagery dated 22 November 2014 for vegetation mapping;
- a limited measurement-based Baseline hydrological time series from October 2003 to 2009 (but with apparent errors due to outdated rating curves);
- a DEM dated August 2013 of insufficient quality to capture the topography of the marsh (e.g., does not account for depth of active channels or lakes), and;
- aerial photography coinciding with the date of the DEM.

<u>All</u> of these data pre-date, and therefore exclude, changes that took place during the severe flood of January/February 2015, which altered the channel planform in some locations, the path of the Ruo River and also broke through the Chiromo Road embankment in several places, through which the now Shire River flows. The Steering Committee was made aware that the latest available DEM did not take account of these recent changes during the Inception, but decided that a new DEM would not be surveyed.

The baseline template of the Elephant Marsh habitats upon which the DRIFT assessment was conducted therefore spans the dates August 2013 (DEM) to November 2014 (RapidEye), and hereafter is termed **Baseline2014**.

2.5 Main threats to the functioning and biodiversity of the Elephant Marsh

The main threats to the functioning and biodiversity of the Elephant Marsh are:

- the growing human population, not only directly surrounding the marsh but within the catchment and Malawi as a whole. This threat manifests in numerous ways, the most immediate of which are:
 - over-harvesting of resources;
 - removal of vegetation for cultivation;
 - increased sediment supply from denuded catchments, and;
 - increased incidence and severity of fire.
- climate change, which is expected to result in longer dry periods and more intense floods, both of which are likely to affect a marsh that is defined by, inter alia, its relationship to the flow of water and sediments entering it. For instance, as noted in Section 2.4, water flows from Lake Malawi into the Shire River have ceased in the past and are likely to do so again in the future, which would lead to drying out of large areas of the marsh and an increase in cultivation (e.g., Richards 1954). Conversely, wetter periods will result in a reduction in cultivation, or possibly a change in crop selection, and;
- water-resource development.

3 Overview of the DRIFT approach

The approach adopted for this assessment is based on the DRIFT EFlows Decision Support System DSS) and process (Brown *et al.* 2013; Brown *et al.* 2017; www.drift-eflows.com), which allow data and knowledge about the functional organisation of aquatic ecosystems to be used to their best advantage in a structured way.

EFlows are defined as "the quantity, frequency, timing, and quality of water and sediment flows necessary to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems⁵".

The DRIFT process is explained in more detail in Appendix A, and more information is available at <u>www.drift-eflows.com</u>. Additional detail on DRIFT is also available in Brown *et al.* (2013).

3.1 The DRIFT DSS

The DRIFT DSS is a framework for a simplified ecosystem model, which focusses on those aspects of an aquatic ecosystem that are expected to be vulnerable to change in flow or water supply (e.g., as a result of water-resource developments), sediment supply (e.g., as a result of dams or land-use changes) and/or management issues (e.g., harvesting of resources).

3.2 The DRIFT process

The DRIFT process is summarised in Figure 3.1.

- Step 1: Decide on the nature of the scenarios to be evaluated. In this study they related to water and sediment flows into the Elephant Marsh, plus various levels of direct use by people living adjacent to the Marsh (Section 7).
- Step 2: Select the focus areas for the assessment (see Section 2.4).
- Step 3: Obtain time-series of water level/hydraulics for the Baseline and other scenarios in each zone and translate these into water level and hydraulic indicator time-series (e.g. if there are 50 years of record, an indicator such as "average depth on the floodplain" will have 50 values, one for each year). The Baseline hydrology and hydraulics form the foundation upon which the ecosystem predictions of change are built.
- Step 4: Select an array of water level, hydraulic, ecosystem and/or social indicators to represent the study site. In the case of the Elephant Marsh, the descriptors thought to be most relevant to the study were decided upon by the specialists collectively. The reasons for their selection are summarised in Section 4.
- Step 5: Describe the baseline (2014) ecological condition (Section 6).
- Step 6: The specialists define the links between their indicators and other DRIFT indicators (Section 5). Together the indicators and links form the conceptual framework for the predictions of change (Section 4). For each link, the specialists constructed a response curve (Figure 3.3) that describes the relationship between the two indicators. Each

⁵ Amended from Brisbane Declaration (2007)

response curve describes the expected impact of a single 'driving' indicator on a single 'responding' indicator.

- Step 7: The response curves are calibrated to best reflect known conditions for the Baseline. Values outside of the known range are usually calibrated with reference to 'calibration scenarios' that allow the specialist to explore likely consequences.
- Step 8: The scenarios selected in Step 1 and developed in Step 3, use the DSS to provide outcomes for the ecosystem and the people depending on it (Section 7).

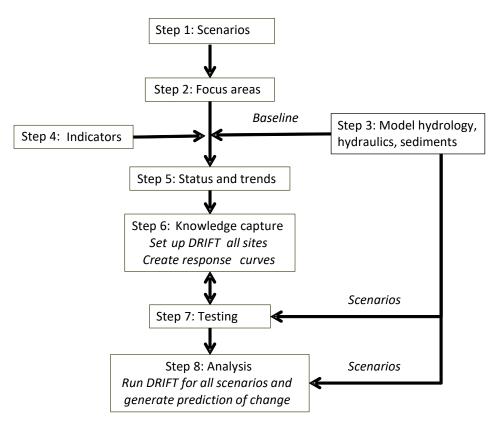


Figure 3.1 The DRIFT process

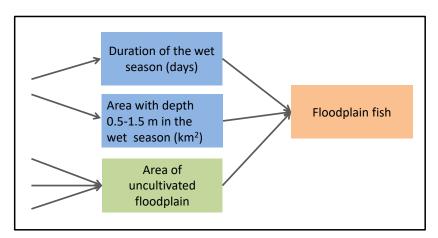


Figure 3.2 Schematic illustrating the concept of 'linked' indicators in DRIFT

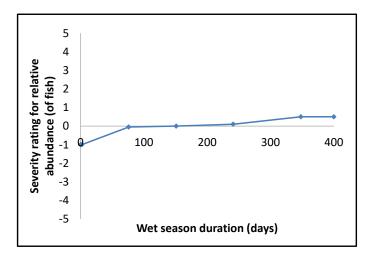


Figure 3.3 Example of a DRIFT response curve

Response curves (Figure 3.3) are constructed using a severity ratings on a continuous scale from -5 (large reduction) to +5 (very large gain; Brown *et al.* 2008; Table 3.1), where the + or – denotes an increase or decrease in abundance or extent. These ratings are converted to percentages using the relationships provided in Table 3.1. The scale accommodates uncertainty, as each rating encompasses a range of percentages; however, greater uncertainty can also be expressed through providing a range of severity ratings (i.e. a range of ranges) for any one predicted change (after King *et al.*, 2003).

Table 3.1	DRIFT severity ratings and their associated abundances and losses – a negative score
	means a loss in abundance relative to baseline, a positive means a gain

Severity rating	Severity	% abundance change
5	Critically severe	501% gain ∞ up to pest proportions
4	Severe	251-500% gain
3	Moderate	68-250% gain
2	Low	26-67% gain
1	Negligible	1-25% gain
0	None	no change
-1	Negligible	80-100% retained
-2	Low	60-79% retained
-3	Moderate	40-59% retained
-4	Severe	20-39% retained
-5	Critically severe	0-19% retained includes local extinction

3.3 The specialist workshop

Steps 6 and 7 were done, for the most part, in a workshop setting.

A workshop was convened from the $15^{th} - 19^{th}$ August 2016 at the offices of Southern Waters in Cape Town. All specialists listed in Section 1.3 participated and interacted with one another, sharing

insights and knowledge about the marsh and their respective disciplines, to populate and calibrate the response curves in the DRIFT DSS. Dr Tim Davies joined proceedings and participated in the workshop from London via Skype.

3.4 Benefits and limitations

3.4.1 Benefits

DRIFT (King *et al.* 2003; Brown *et al.* 2013) has the following relevant benefits for a study such as the Elephant Marsh assessment:

- The DRIFT DSS, once populated with the results of the data-collection phase, allows investigation of any number of scenarios of interest to managers and decision makers, without reconvening specialist workshops.
- It is a time-series based approach that may be used with daily or hourly flow/water level data (depending on the operating rules of upstream water-resource, e.g., hourly data would be needed to evaluate the impacts of peak-power production).
- It addresses key aspects of the flow, sediment and/or hydraulic regime in a structured approach.
- It allows for the evaluation of the implication for biodiversity of various management interventions.
- Its setup for each project is adapted to suit the aquatic ecosystem under investigation (and the availability of data) rather than the ecosystem having to 'fit' the method.
- It has been the focus of 25 years of applied development, and is published in numerous international scientific journals (e.g., King *et al.* 2003; Brown and Joubert 2003; King and Brown 2009; Brown *et al.* 2017).
- It has been widely applied internationally: e.g., Berg, Breeede, Groot, Mthaltuze, Mkuze, Assegaai, Silver, Kaaimans, Vaarings, Olifants-Doorn, Olifants and Pongola rivers, South Africa; Senqu, Malibatmatso and Senqunyane rivers, Lesotho; Cunene River, Angola and Namibia; Huaura River, Peru; Mekong River (including the Vietnam Delta, the Cambodian Floodplains and Tonle Sap Great Lake), Thailand, Lao PDR, Cambodia and Vietnam; Nile River, Sudan; Neelum/Jhellum and Poonch rivers, Kashmir/Pakistan; Odzi and Pungwe Rivers, Zimbabwe; Okavango River, Angola, Namibia and Botswana; Kouilou-Niari River, Republic of Congo; Cuanza River, Angola; Pangani and Ruvu rivers, Tanzania; Zambezi River, Zambia, Zimbabwe, Mozambique, and; Lake Sibaya and the Pongolo Floodplain, South Africa.
- It produces predictions that detail how the ecosystem could change, and how this could impact people, in ways that stakeholders and decision-makers can relate to.

3.4.2 Limitations

Data are always a limiting factor in environmental studies. With contemporary understanding of how aquatic ecosystems function, it has become easier to predict what will change and the direction of change. It is less easy to predict by how much ecosystem components will change and how long it will take. For this reason:

- all predictions should be evaluated with due cognisance of the assumptions necessitated by the constraints of the study, and;
- it is better to evaluate the outcome of the scenarios relative to one another rather than as absolute individual predictions of change.

4 The conceptual model for the Elephant Marsh

4.1 Indicators used

Hydrological, hydraulic, ecosystem and management indicators were selected to capture the response of the Marsh to changes in water level, sediment supply and management initiatives, and the effects of those responses on people who use the Marsh. Selection was done by the specialist team outlined in Table 1.1, based on insights gained from the work done for the biodiversity (Turpie *et al.* 2016) and hydromorphology reports (Birkhead *et al.* 2016), both of which included field work and an extensive literature search.

The hydraulic, ecosystem and management indicators, and the reasons for selection are provided in Table 4.1, Table 4.2 and Table 4.3, respectively; and additional detail is provided for individual disciplines in Sections 5.1 to 5.8.

Indicator		Units	Reason for selection	
gins	Mean annual depth	m	Changes in mean annual depth influence the riparian zone of uncultivated and cultivated channel margins.	
	Dry onset	calendar week	 Onset and duration of seasons are important ecologically in that they: link with climatic factors cue fruiting and flowering cue migration and breeding 	
	Dry duration	days		
el mar	Wet onset	calendar week		
Channel / Channel margins	Wet duration	days	 support life-history patterns. 	
	Dry minimum 5 day depth	m		
	Wet maximum 5 day depth	m	Water depth and velocity are key defining variables for aquatic habitat. They also dictate shear-stress, which partly controls erosion and deposition.	
	Dry average channel velocity	m/s		
	Wet average channel velocity	m/s		
	Area with depth 0.03-0.5 m in the wet season	km ²	Cultivated areas are inundated to the least extent. Shallow seasonal inundation of the cultivated areas favours crop growth (see Section 5.3).	
floodplain	Area with depth 0.6-0.85 m in the wet season	km²	Seasonally-inundated indigenous vegetation grows on the uncultivated parts of the floodplain (see Section 5.3) that are too wet for the favoured crops but not wet enough to sustain reeds and papyrus.	
Marsh and floodplain	Area with depth 0.9-1.1 m in the wet season	km²	Reeds are drowned if inundated for long periods at depths greater than 1.1 m but can also tolerate some periods of drying out (see Section 5.3).	
	Area with depth 1.15-1.6 m in the wet season	km²	Papyrus grows in areas that are inundated permanently and can grow in deeper water as sudd (floating mats of interconnected papyrus culms and rhizomes (see Section 5.3).	

Table 4.1 Hydraulic indicators

Indicator Uni		Reason for selection
Area with depth >0.6 m in the dry season	km²	Rooted aquatics grow best at depths less than 1.0 m and start to become stressed when depths fall below 0.6 m (see Section 5.3).
Area with depth 0.5-1.5 m in the wet season	km ²	Shallow water habitats (<2 m) on floodplains and lake margins are important breeding areas and also are depths that contain high abundances of diatoms, an important food source for fish (see Section 5.5)
Area with depth < 10 cm	km²	Small waders forage specifically in shallow water at lake margins, or the muddy fringes and will vacate an area where these foraging depths are not available (Harrison <i>et al.</i> 1997; see Section 5.8)
Average total marsh area in the wet season	km²	When the water spreads out over the floodplain - it slows down and drops much of its sediment (more if there is a lake or reeds). So total inundated marsh area is an important determinant for sediment retention (see Section 5.2).
Lake area in the wet season	km²	Lakes are important breeding and feedings grounds for an array of bird species (see Section 5.8)

Table 4.2 Ecosystem indicators

Discipline	Indicator	Reason for selection
	Sediment input/retention/ output/	Sediment input, retention and output, together with water inflow, are fundamental in determining the existence, functioning and change over time of the Marsh
	Turbidity	Turbidity is inversely related to water clarity, or transparency, and refers to the depth of light penetration within a water body. This indicator is important as it is a major control on the growth of aquatic plants, including algae. Material suspended in the water column causes turbidity, which scatters reducing the photic depth of the water.
Geomorphology	Channelisation	The extent of flooding of the Marsh area can change in response to various factors, one of which is channelisation. Channelisation results in channels with higher conveyance capacities, which require a larger volume of water to overtop and flood the marsh than do non-channelised channels. Channelisation is directly related to sediment storage on the adjacent floodplain/marsh/lake areas, since sedimentation of these areas results in a reduction in flow interflow between channels and the marsh. However, concomitant bed aggradation, which appears to have taken place, will reduce this effect, and the above response is likely to be conservative (i.e. overestimate channelisation).
	Change in flood extent	The extent of flooding of the Marsh is a key determinant in the existence, functioning and use of the Elephant Marsh. As channelisation increases, flood extent will reduce. Extreme floods will still overtop the banks/levees and inundate the floodplain, but not to the same extent.

Discipline	Indicator	Reason for selection
	Rooted aquatics	Rooted aquatic plants dominate the lakes and provide important habitat for aquatic invertebrates, fish and birds. Rigid hornwort is also used to build fish pens around the lake margins and the tubers of the white lily are eaten.
Vegetation	Floating exotics	Floating exotics can completely cover water bodies, with serious consequences for indigenous flora and fauna.
	Area of cultivated floodplain	The populations of the villages and towns surrounding the marsh subsist on crops cultivated on the floodplains, notably in the Northern and Western areas.
	Area of uncultivated floodplain	Uncultivated areas of floodplain provide important grazing areas for cattle and goats but also for hippos, reptiles and small mammals; and are spawning areas for some fish.
	Area of reeds	Reeds and emergent grasses are one of the main marsh vegetation types (the other being papyrus). These have numerous ecological and social uses. For instance, the submerged portions of the plants provide important habitat and/or refugia for aquatic invertebrates and juvenile fish. The exposed plant parts provide habitat for birds, and are harvested to make a variety of products (reed baskets, hats, mats).
	Area papyrus	Papyrus sedge is one of the main marsh vegetation types (the other being reeds and grasses). These have numerous ecological and social uses. For instance, the submerged portions of the plant provide important habitat and/or refugia for aquatic invertebrates and juvenile fish. The exposed plant parts provide habitat for birds, and are harvested to make a variety of products (fences, mats, coal, brooms).
	Area uncultivated channel margin	Uncultivated channel margins are important habitat for a variety of aquatic macroinvertebrates, fish and birds. They are also basking areas for crocodiles and exit areas for hippos to access grazing areas on the floodplain.
	Invertebrate community health	Relative diversity of aquatic macroinvertebrates informs about the condition and diversity of aquatic habitats and water quality. The presence of pollution sensitive taxa indicate better water quality conditions while a range of functional feeding groups indicate better habitat conditions.
Invertebrates	Invertebrate pests	Malaria and Filaria carrying <i>Anopheles</i> mosquitoes occur more frequently near the densely populated villages around the marsh than in the marsh itself, being reared in temporary pools and other standing water bodies with algae (Berner 1955). Other biting midges and flies are also present in the marsh that make living and working in the marsh difficult and could be, under pest proportions, intolerable.
	Floodplain migrant fish	Floodplain migrants undertake lateral migrations onto and off the floodplain. Juveniles are strongly dependent on shallow areas as feeding areas. Many floodplain migrant fish are important fisheries species.
	River channel fish	River channel fish are longitudinal migrants that also undertake migrations onto and off the floodplain, which they use for breeding, nursery grounds and feeding. Many species are key predators of other fish.
Fish	Demersal fish	Demersal species live and breed on river bed habitats and can be affected by extreme physical hydrograph changes. Many demersal fish are important fisheries species.
	Channel margin fish	Channel margin fish have a strong association with peripheral submerged and emergent vegetation and therefore are susceptible to changes in flow that affect riparian habitat.

Discipline	Indicator	Reason for selection
	Crocodiles	Large Nile crocodiles (>3 m) are still common in the Shire River and Elephant Marsh and conflict with humans that cultivate in the marsh. Several human deaths are reported each year. Crocodiles are important as they affect humans, livestock and other wildlife they take as prey, for example fish and birds.
Herpetofauna	Small reptiles	Small reptiles are influenced by human disturbance and changes in the extent and condition of aquatic and floodplain habitat.
	Amphibians	Amphibians are influenced by human disturbance and changes in the extent and condition of aquatic and marsh habitat.
Mammals	Hippos	Hippos are the only remaining large herbivore in the marsh and play an important role in the marsh ecosystem functioning, maintaining open channels and facilitating nutrient transfer and cycling between the marsh and floodplain.
	Small mammals	Small mammals are influenced by human disturbance and changes in the extent and condition of floodplain habitat. These groups are also hunted opportunistically as a food source by humans.
	African skimmer	This threatened species has a sizeable population in the region due to the abundance of sand bar resting sites. This species was chosen in particular for its conservation value that is crucial to gain RAMSAR status for the marsh.
	Cormorants	These species are piscivorous, breed and roost on riparian trees and feed by diving into lakes.
	Wading birds	These long-legged species hunt on foot in shallow water, sometimes co- operatively, and feed on small fish, amphibians and invertebrates.
Birds	Water fowl	Waterfowl feed by dabbling or diving or on foot (some rallids) and are omnivorous.
	Waders	These small birds feed on benthic macroinvertebrates in/on exposed mud or sand flats.
	Gulls and terns	Gulls and terns are typically found on the lakes feeding on small prey at the near the surface.
	Kingfishers	These open-water piscivores dive for small fish prey.

Table 4.3 Management indicators

Indicator	Reason for selection
Access	Access is a major determinant of human pressures on the Elephant Marshes. Where access is easy, most of the natural features of the Marsh have been significantly altered. Where access is difficult, harvesting and other pressures are lower and the natural character of the Marsh remains intact.
Fire	Fire is a frequently used means of management in the Marsh. It is extremely damaging to the vegetative structure of the Marsh, with knock-on effects on Marsh functioning, and kills or displaces animals living in the vegetation. In many cases, clearing by fire is also a precursor to cultivation.
Cultivation	Removal of vegetation and manipulation of banks and channels for cultivation is one of the main human pressures on the Marsh. It is particularly damaging to seasonally flooded grasslands, because it targets the same areas.
Harvesting pressure	Harvesting for building/craft materials or food, or simply killing for protection or to reduce competition, is an overriding influence on a range of natural resources in the Marsh, including vegetation, some invertebrates, fish, birds, snakes, hippos, frogs, small mammals and crocodiles.

Each of the indicators is linked with other indicators deemed to drive change. The aim is not try to capture every conceivable link, but rather to restrict the linkages to those that are most meaningful and can be used to predict the bulk of the likely responses to a change in the supply of water, or sediment, to the Marsh, or as a result of a change in management of the Marsh.

Hydraulic indicators are driving indicators derived from the hydrodynamic model, so they do not have links in the DRIFT DSS. A full list of linked indicators is provided for the geomorphology indicators (Section 5.2) and for each of the ecosystem and management indicators (Section 5.3 to 5.8) together with the response curves describing each of the links and explanations for the shape of the response curves.

4.2 Links and the conceptual model for the Elephant Marsh

The broad conceptual framework used in this assessment is depicted in Figure 4.1 and the actual links between indicators as used in the DRIFT conceptual model are shown in Figure 4.2. Response curves for each of these links are described in Section 5.

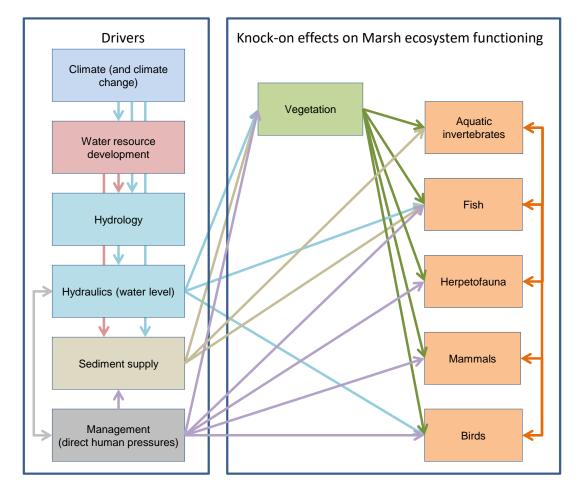


Figure 4.1 A simplified schematic of the links between the abiotic drivers (climate, hydraulics, geomorphology and management) and the knock-on links to biota, which comprise the Elephant Marsh conceptual model.

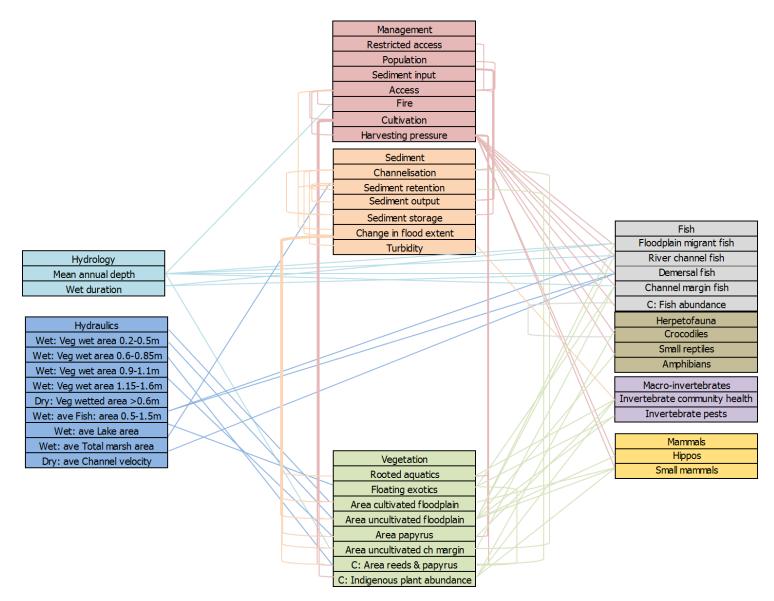


Figure 4.2 Schematic showing the indicators and links in the DRIFT DSS used to conceptualise the functioning of the Elephant Marsh

5 Discipline specific explanations for indicators and links

5.1 Hydrology and hydraulics

The compilation of the baseline daily hydrological time-series used in this assessment and the development and use of the hydrodynamic model developed to derive the hydraulics of the five focus areas linked to the hydrological sequence are covered in detail in the Hydromorphology Report (Birkhead *et al.* 2016) and are not addressed further here.

The baseline daily hydrological time-series used covered the period 1976-2009, i.e., 33 years (Figure 5.1). Figure 5.1 clearly shows that the hydrology over this period comprised three distinct phases: an early wet phase (c. 1976-1990), middle dry phase (1991-2002) and a later medium phase (2003-2009). This led to some difficulty in calibrating a baseline condition for the ecosystem indicators in the DSS, and so it was eventually agreed to calibrate to the latter 'medium' condition⁶. The three periods were also separated and repeated to cover the whole period (1976-2009) and used as scenarios (see Section 7).



Figure 5.1 Baseline daily hydrological time-series, 1976 - 2009

Since Marsh water levels are key in defining marsh morphology and vegetation communities, and thus in dictating the biotic responses, the hydrological data were not used directly, but were converted to water depth in the five focus areas, which were then used as the main driving variables in the DRIFT assessment (see Section 7.2).

⁶ DRIFT presents results as percentage change relative to the baseline condition. By definition, baseline must be set at/calibrated to 100%.

5.2 Geomorphology

5.2.1 Geomorphology indicators

Six geomorphological indicators were selected for the DRIFT DSS. These are defined in Table 5.1, along with an indication of the main variables likely to drive change in the indicator.

 Table 5.1
 Geomorphology indicators and their main driving variable in the Marsh

Indicator	Driving variables
Sediment retention	Sediment retention is related to attenuation of flows and slowing of water as a result of flooding out of the channel and into the Marsh, which result in deposition of suspended sediments. It is also related to the extant and density of vegetation, which slows water flow, causing deposition of sediment.
Turbidity	Turbidity is related to the concentration and grain-size distribution of suspended material, and the shear stress of the water column. Small particles (clay) are more likely to cause turbidity in the Marsh than larger particles (sand), which will drop out of suspension at higher shear stresses.
Channelisation	Many of the historic and more recent changes in Marsh dynamics promote channelisation. These include: breaches to the embankment associated with Chiromo Bridge; change in course of the Ruo River; human use/removal of vegetation, especially from the channel banks; increased sediment inputs.
Change in flood extent	A change in flood extent can occur for many reasons, the most important of which are: change in inflowing hydrological regime, and; change in the topography of the Marsh, such as channelisation.
Sediment output	Sediment output is mainly determined by sediment input and sediment retention.
Sediment storage	Sediment storage is sediment input minus sediment output.

5.2.1.1 Composite indicators for geomorphology

None.

5.2.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the geomorphology indicators are tabulated as follows (Eastern Site used as an example):

- Table 5.2Sediment retention: Linked indicators, response curves and motivations.
- Table 5.3Turbidity: Linked indicators, response curves and motivations
- Table 5.4Channelisation: Linked indicators, response curves and motivations.
- Table 5.5Change in flood extent: Linked indicators, response curves and motivations.
- Table 5.6Sediment output: Linked indicators, response curves and motivations.
- Table 5.7Sediment storage: Linked indicators, response curves and motivations.

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are

unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

Linked i	ndicator a	and resp	onse cu	irve		Explanation
		(1	1			Lakes (open water surfaces) constitute a small
Desc	we Lake area		Y2		10	proportion (1%) of the overall landuse (vegetation type
Min	кт2 0.000	Y1 -0.232	12			(refer to the Hydromorphology Report), but
Min Base	3.354	-0.082			80	
- III Babe	4,281	-0.041			60	anonetheless enhance sediment deposition through
Median	5.208	0.000			40	🚆 greater depths and reduced velocities. This
	5.305	0.003			20	relationship has been set as linear, with the
Max Base	5.401	0.006			0	percentage change reflecting the areal coverage (4%)
Max	6.212	0.029		0 1 2	3 4 5 6	
						The Eastern Site is characterised by predominantly
						marsh-type vegetation and lakes (83%), with terminal
						channels that promote substantial sediment filtering,
	ave Total mars	-	-			to the extent that clear flows emerge at its
Desc Min	km2 0.000	Y1 0.000	Y2		14	downstream end (certainty during the dry season when
Min Base	61.761	0.000			10	vegetation is emergent and tranning efficiency is high)
	88.177	0.000			80	Φ
Median	114.593	0.000			60	Western and Southern) sediment retention is less
	120.695	0.202			40	
Max Base	126.797	0.683			0	
Max	145.816	1.555		0 20 40 60	80 100 120 140	mainly through "overbank deposition", but also due to
						"forced filtering" due to terminal channels. Hence a
						100% direct relationship has been applied, but only for
						values below the median marsh area.
		_				Lateral sediment inputs from tributaries feeding
	ent input [F					directly into the marsh: a 100% change in retention is
Desc	%Base	Y1	Y2		3	
Min Min Base	0.000	0.000			2	²⁰ applied (high, as the input is filtered through the
Min base	50.000	0.000			2	marsh, which will allow for high rates of deposition),
Median	100.000	0.000				#truncated at 100% as it is unlikely that inputs and
	150.000	2.119				²⁰ hence retention can practically be reduced and
Max Base	200.000	2.762			5	furthermore the Eastern Site has high
Max	250.000	3.138		0 50 100	0 150 200 250	trapping/filtering efficiency.
Chann	elisation [F se	asonl				Channelisation will lead to less flooded marsh area and
Desc	%Base	Y1	Y2			hence reduced propensity for sediment retention. The
Min	0.000	2.119			15	
Min Base	25.000	1.852				Eastern Site is characterised by terminal channels and
	50.000	1.475			10	substantial retention capabilities, and an increase in
Median	100.000	0.000				[*] channelisation will have a much greater effect on
	150.000	-1.447			50	retention than for other sites (viz. Northern and
Max Base	200.000	-2.895				Western). An inverse 50% relation is applied.
Max	250.000	-4.342		0 50 100	150 200 250	western). An inverse 50% relation is applied.

Table 5.2	Sediment retention: Linked indicators,	response curves and motivations (Eastern)

inked ir	ndicator a	nd resp	onse curve	Explanation
Sedime	nt output [F	season, Sit	e=Northern]	Codiment input from unctreased output from the
Desc Min all Min Base Median Max Base Max	%Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 -5.000 -4.342 -2.895 0.000 2.119 2.762 3.138	Y2 0 50 100 150 200	Sediment input from upstream: output from the Northern Site. Given a well-defined channel at its upstream end with terminal channels further downstream, a 100% change in retention is estimated (as per the lateral inputs with no truncated lower-limit at 100%).
C: Are	a reeds _papyr %Base 0.000	rus [F seaso Y1 -4.574	on, Step= -1] Y2	The marsh vegetation (viz. reeds, papyrus and sedges) enable sediment filtering through the Eastern Site.
Min Base	25.000 50.000	-3.430 -2.287		There is a high relative proportion of these compared to many of the other sites. This relationship has been
Median	100.000 150.000	0.000		¹⁰⁰ set as linear, with the percentage change reflecting the
Max Base Max	200.000 250.000	2.543 2.919	0 50 100 150 200	⁵⁰ areal coverage (79%) by reeds and papyrus and other essentially indigenous marsh vegetation.

Table 5.3 Turbidity: Linked indicators, response curves and motivations (East

Linked i	indicator a	and resp	onse c	rve Explanation
Sedim Desc Min Min Base Median Max Base Max	ent input [F s %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 0.000 0.000 0.000 0.000 2.119 2.762 3.138	Y2	Lateral sediment inputs from tributaries feeding directly into the marsh: a 100% change in retention is applied (high, as the input is filtered through the marsh, which will allow for high rates of deposition), truncated at 100% as it is unlikely that inputs and hence retention can practically be reduced and furthermore the Eastern Site has high trapping/filtering efficiency.
Sedim Desc Min Min Base Median Max Base Max	ent retention %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	[F season] Y1 2.762 2.495 2.119 0.000 -2.895 -5.000 -5.000	Y2	Sediment output is indirectly related to sediment retention.
Sedim Desc Min Min Base Median Max Base Max	nent output [F %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Season, Sit Y1 -5.000 -4.342 -2.895 0.000 2.119 2.762 3.138	Y2	Sediment input from upstream: output from the Northern Site. Given a well-defined channel at its upstream end with terminal channels further downstream, a 100% change in retention is estimated (as per the lateral inputs with no lower-limit truncation at 100%).

inked i	ndicator a	and resp	ponse	curve				Explanation
Sedime	ent storage [F	season, St	tep= -4]					Channelisation is related to sediment storage in the
Desc Min Min Base Median Max Base Max	%Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 -0.058 -0.043 -0.029 0.000 0.019 0.038 0.057	Y2	0 50) 100 15		100 80 60 see 40 % 20 0	adjacent marsh/lake areas. However, sediment storage in the Marsh has two forms, build-up of the floodplain (which will lead to increased channelisation) and build up of the channel beds (which will reduce channelisation). Overall the effect is probably close to neutral, with possibly a slight increase in channelisation.
Area u Desc Min Min Base Median Max Base	incultivated ch %Base 0.000 25.000 50.000 100.000 150.000 200.000	margin [F Y1 0.057 0.038 0.019 0.000 0.000	season, S Y2	tep= -4]		100 80 60 888 40 % 20	Channelisation is indirectly related to area of uncultivated channel margin, since cultivation reduces bank stability leading to channel widening. Conversely indigenously-vegetated banks trap sediment and enhance channel narrowing, which, in-turn, leads to channel blockages and the development of new flow paths and channels (i.e., reduces channelisation). The
Max	250.000	0.000		0 5	0 100 15	0 200 25	0	relationship is truncated at 100%, as a reduction from Present Day (due to increased uncultivated channel

Table 5.4 Channelisation: Linked indicators, response curves and motivations (Eastern)

Table 5.5 Change in flood extent: Linked indicators, response curves and motivations (Eastern)

Linked i	ndicator a	nd resp	onse c	urve			Explanation
Channe	elisation [F se	ason]					Reduced channelisation should not have any effect on change in flood extent, since under present conditions, the Eastern Site displays little channelisation. The
Desc	%Base	Y1	Y2			100	relationship is thus truncated at 100% (actually,
Min	0.000	0.000				80	channelisation can only increase). As channelisation
Min Base	25.000	0.000				c 0	
	50.000	0.000				60	increases, flood extent will reduce, with a 50% increase
Median	100.000	0.000				40	resulting in an estimated 25% reduction of the flood
	150.000	-1.500				20	•
Max Base	200.000	-4.000					extent. Even with substantial channelisation, extreme
Max	250.000	-4.000		0 50	100 150 200 250	8	floods will overtop the banks/levees and inundate the
							floodplain, but not to the same extent, since the
							channels will have higher conveyance.

rable 3.0 Seument output. Linkeu multators, response curves and motivations (Lastern)	Table 5.6	Sediment output: Linked indicators, response curves and motivations (Eastern)	
---	-----------	---	--

Linked in	ndicator a	nd resp	onse cu	/e Explanation	
Sedime	ent input [F se	eason]		Lateral sediment inputs from tributaries feedir	ng
Desc Min	%Base 0.000	Y1 0.000	Y2	³⁰⁰ directly into the marsh: a 100% change in reter	ntion is
Min Base	25.000 50.000	0.000		 applied (high, as the input is filtered through the second second	he ition)
Median	100.000	0.000		¹⁵⁰ *truncated at 100% as it is unlikely that inputs a	and
Max Base	150.000 200.000	2.119 2.762		50 hence retention can practically be reduced and	
Max	250.000	3.138		50 100 150 200 250 Eastern Site has high trapping/filtering efficien	cy.

inked ir	ndicator a	nd respo	onse cu	rve Explanation
🗹 Sedim	ent retention	[F season]		
Desc Min Min Base Median Max Base Max	%Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 2.762 2.495 2.119 0.000 -2.895 -5.000 -5.000	Y2	Sediment output is indirectly related to sediment set etention.
Sedime Desc Min	ent output [F %Base 0.000	Y1 -5.000	e=Norther Y2	n] Sediment input from upstream: output from the Northern Site, Given a well-defined channel at its
Min Base	25.000 50.000	-4.342 -2.895		²⁵⁰ ²⁰⁰ supstream end with terminal channels further ¹⁵⁰ downstream, a 100% change in retention is estimated
Median Max Base	100.000 150.000 200.000	0.000 2.119 2.762		100 (as per the lateral inputs with no lower-limit truncation
Max base	250.000	3.138		o 50 100 150 200 250 at 100%).

Table 5.7 Sediment storage: Linked indicators, response curves and motivations (Eastern)

Linked indicator and response curve					1			Explanation	
									There are very few data to support the estimation of actual rates of floodplain/marsh sedimentation, which in this context is relate to sediment retention. However, the carbon dating of limited sediment cores provides some insights, when combined with the circumstantial evidence that the rate of aggradation
									may have considerably increased over the past 50 years or so, relative to before that. To develop this
	ent retention								relationship the following was applied: (1) Carbon
Desc	%Base	Y1	Y2					100	dating indicates historical rates of sedimentation of
Min Deve	0.000	0.000		approxim	approximately 1 mm/annum; with the more recent (50				
Min Base	25.000 50.000	0.001						60	year) rate substantially higher at approximately 30
Median	100.000	0.001						40	· · · · · · · · · · · · · · · · · · ·
- Icelien	150.000	0.002							* mm/annum. (2) Over the 33-year hydrological period
Max Base	200.000	0.002						20	and for an estimated alluvial depth of 100 m, the
Max	250.000	0.002		6	50 10	0 150	200	250	change in storage has thus been of the order 1 m, or
				-					101% relative to baseline at 100%. The curve is
									therefore a linear function (through the origin at 0%
									·
									Min) of cumulative sediment retention, giving storage
									of 101% in 2009. (3) There are insufficient data to
									differentiate between sites, so this estimate is applied
									uniformly across the floodplain (Northern) and marsh
									(downstream). One of the 3 sediment cores was
									extracted from the Eastern Site.

5.3 Vegetation

The data collection and analyses underlying the selection of vegetation indicators are presented in Turpie *et al.* (2016) and Birkhead *et al.* (2016). These led to the delineation of eight main vegetation 'types', including areas of water (Figure 5.2), *viz.*:

- 1. Open water
- 2. Floating/rooted aquatic vegetation

- 3. Bare
- 4. Cultivated
- 5. Recently burnt
- 6. Seasonally-inundated indigenous vegetation
- 7. Reeds/grasses
- 8. Papyrus.

The focus areas introduced in Section 2.2 were selected partly on the basis of these mapped vegetation types, and thus differ with respect to the presence and proportion of the eight vegetation types, summarised in Table 5.8. In basic terms:

- the Northern and Western areas are dominated by cultivated fields, which have replaced the natural seasonally-inundated indigenous vegetation;
- the Eastern and Central Areas are dominated by indigenous reeds and emergent grasses, however:
 - in Central, much of the remainder of the vegetation comprised of seasonallyinundated indigenous vegetation and cultivation;
 - Eastern is generally far wetter, and has the highest proportion of papyrus (~12%).
- the Southern Area is dominated by cultivated areas, but it also has the biggest lakes, and the most area covered by open water. Apart from agriculture, the proportions of open water, floating/rooted aquatic vegetation; reeds/grasses and papyrus are roughly equal.

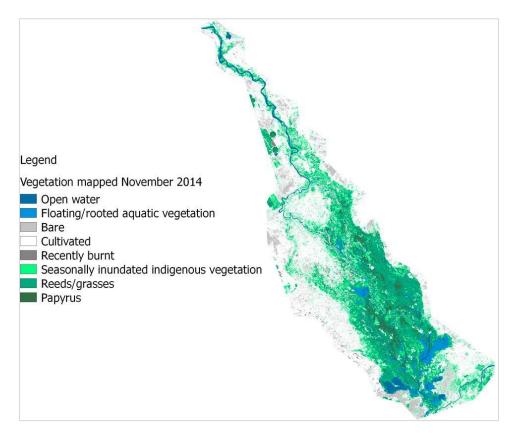


Figure 5.2 Vegetation types of the Elephant Marsh as at November 2014

Focus Area	Northern	า	Western	l	Eastern		Central		Souther	n	Whole N	1arsh
Туре	km²	%	km²	%	km²	%	km²	%	km²	%	km²	%
Open water	1.6	2.0	0.5	0.2	2.2	1.7	3.9	3.6	9.7	17.1	17.8	3.0
Floating/rooted aquatic vegetation	0.1	0.1	0.2	0.1	3.2	2.5	6.5	6.0	11.0	19.4	21.0	3.6
Bare	5.1	6.2	15.6	7.5	1.9	1.5	0.1	0.1	5.4	9.5	28.1	4.8
Cultivated	51.1	62.5	139.9	67.2	7.1	5.5	7.1	6.5	15.4	27.2	235.7	40.4
Recently burnt	0.6	0.7	3.9	1.9	0.4	0.3	0.4	0.4	0.2	0.4	5.5	0.9
Seasonally-inundated indigenous vegetation	14.0	17.1	25.5	12.2	24.3	19.0	16.6	15.2	6.7	11.8	87.1	14.9
Reeds/grasses	9.0	11.0	13.8	6.6	74.6	58.2	59.8	54.9	9.1	16.0	166.2	28.5
Papyrus	0.4	0.5	1.1	0.5	14.9	11.6	14.8	13.6	0.9	1.6	32.2	5.5
Indigenous vegetation (composite)	23.4	28.6	40.4	19.4	113.8	88.8	91.2	83.7	16.7	29.5	285.5	48.9
Total	81.8	100	208.2	100	128.2	100	108.9	100	56.7	100	583.8	100

Table 5.8Extent of mapped vegetation 'types' per site and for the Whole Marsh (green denotes
the dominant vegetation type in each area)

5.3.1 Vegetation indicators

Seven vegetation indicators were selected for the DRIFT DSS. These are defined in Table 5.9 along with representative species and an indication of the main variables likely to drive change in the indicator. The grouping the vegetation types into the indicators is shown in Table 5.10.

Table 5.9Vegetation indicators, representative species and their main links to water levels in
the Marsh

1	Indicator	Representative species	Driving variables		
	Rooted indigenous aquatics	Plants with submersed leaves (e.g., rigid hornwort <i>Ceratophyllum</i> <i>demersum</i>) or floating leaves (e.g. white lily <i>Nymphaea lotus</i>)	Linked closely to the availability of open water at depths <0.6 m (<u>www.plantzafrica.com</u> ; K. Reinecke, Pers. Obs., this study).		
Varsh and floodplain	Floating exotics	The two dominant free-floating exotics on the Marsh are <i>Pistia</i> <i>stratioites</i> (water lettuce) and <i>Eichhornia crassipes</i> (water hyacinth), both of which originate in South America.	Exotic free-floating exotics lack natural predators and so their proliferation can be fairly independent of other environmental factors, such as water depth. However, they will benefit if indigenous plant species are stressed (less rigorous competition for space). They also benefit from high dissolved nutrients and low flushing flows (Hazelton <i>et al.</i> 2016).		
Ma	Area cultivated floodplain	Various cultivated crop varieties are present (e.g., sorghum, maize, rice, mango, banana, beans).	Lower water levels allow for a greater extent of the marsh to be accessed and cleared for cultivation.		
	Area uncultivated floodplain	Typically grass dominated and comprising species such as Cynodon dactylon (grazing grass) and Miscanthus junceus (vlei grass).	Closely linked to the frequency, duration and magnitude of floods that inundate the floodplain (Ellery <i>et al.</i> 2003; Gaudet 1992; Keddy 2005; McCarthy <i>et al.</i> 1986).		

1	Indicator	Representative species	Driving variables		
	Area reeds	Dominated by the common reed (Phragmites australis) and hippo grass (Vossia cuspidata).	Closely linked to the seasonal fluctuations in the flow regime (Fraser and Keddy 2005; Gaudet 1992; McCarthy <i>et al.</i> 1993; Tulbure and Johnston 2010).		
	Area papyrus	Perennially inundated areas inhabited by papyrus sedge (<i>Cyperus papyrus</i>).	Papyrus sedge benefits from stable water levels. It inhabits permanently inundated areas and cannot tolerate drying out (Denny 1985; Ellery <i>et al.</i> 1995; Fraser and Keddy 2005; Gaudet 1992; Petr 2000; Sutcliffe 1974; Whigham <i>et al.</i> 1993).		
Channel margins	Area uncultivated channel margin	Seasonally inundated channel margins inhabited by common reed (<i>Phragmites australis</i>), hippo grass (<i>Vossia cuspidata</i>), papyrus sedge (<i>Cyperus papyrus</i>).	Closely linked to the seasonal fluctuations in the flow regime, including onset and duration of floods, magnitude and frequency of floodplain and dry season discharge/water level (Reinecke 2013).		

Table 5.10Grouping of vegetation indicators for calculating hydraulic relationships at floodplain
and marsh areas

Mapped vegetation types	Relevant vegetation indicators		
Open water	Dested indigenous equation plus fleating evotion		
Floating/rooted aquatic vegetation	Rooted indigenous aquatics, plus floating exotics		
Bare			
Cultivated	Area cultivated floodplain		
Recently burnt			
Seasonally-inundated indigenous vegetation	Area uncultivated floodplain		
Reeds/grasses	Area reeds		
Papyrus	Area papyrus		

The uncultivated floodplain and uncultivated channel margins represent the same kinds of vegetation but the way in which hydraulic information was generated for them from the hydraulic modelling differed and so they needed to be considered as separate vegetation indicators.

For the uncultivated floodplain and the other floodplain indicators, reeds, papyrus and rooted aquatics, the well-documented and strong links between vegetation types and flooding depth, frequency and duration meant that the hydrodynamic model could be used to derive a first level range of "suitable" water depths based on the flooding characteristics for baseline. The resultant median annual depths of inundation for the baseline hydrological time-series, per vegetation type and per focus area, are presented in Figure 5.3.

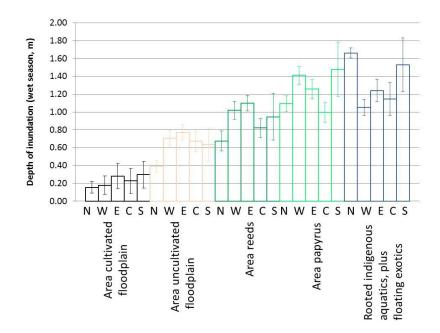


Figure 5.3 Median inundation depth (± standard deviation) per vegetation type (types as per Table 5.10) per site

Obviously, the indicators represent points in a continuum and so it is not surprising that there is some overlap between the indicators in Figure 5.3. This is particularly the case for rooted aquatics and papyrus, as both of these must be permanently inundated to survive. Notwithstanding this, the data were used to estimate the median (± standard deviation (SD)) average depth of inundation and the minimum and maximum range of average inundation depths, per vegetation type per site (Figure 5.4); and are denoted as 'modelled' in Table 5.11.

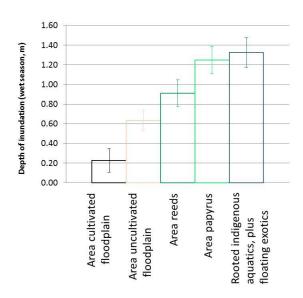


Figure 5.4 Average of median inundation depth (± standard deviation) per vegetation type (types as per Table 5.10)

Vegetation		W	et seasor	n depth (m)		
indicator	Ν	Nodelled	ł	Adjusted			References
Indicator	Mean	SD	Min	Max	Min	Max	
Area cultivated floodplain	0.23	0.12	0.11	0.35	0.03	0.5	Gaudet (1992); Keddy (2005); K. Reinecke, Pers. Obs. (this study).
Area uncultivated floodplain	0.64	0.11	0.53	0.74	0.6	0.85	Ellery <i>et al.</i> (2003); Gaudet (1992); Keddy (2005); McCarthy <i>et al.</i> (1986); K. Reinecke, Pers. Obs. (this study).
Area reeds	0.91	0.13	0.78	1.05	0.9	1.1	Fraser and Keddy (2005); Gaudet (1992); McCarthy <i>et al.</i> (1993); Tulbure and Johnston (2010); K. Reinecke, Pers. Obs. (this study).
Area papyrus	1.25	0.14	1.11	1.39	1.15	1.6	Denny (1985); Ellery <i>et al.</i> (1995); Fraser and Keddy (2005); Gaudet (1992); Petr (2000); Sutcliffe (1974); Whigham <i>et al.</i> (1993); K. Reinecke, Pers. Obs. (this study).
Rooted aquatics	1.33	0.15	1.17	1.48	-	> 0.6	www.plantzafrica.com; pers. obs. (this study)

Table 5.11 Modelled and adjusted wet season depths of inundation for vegetation indicators

These were then adjusted using depth data for the representative species from the literature, to arrive at 'adjusted' depth ranges (Table 5.11) that were used as the depth ranges under which each of the vegetation types would persist; or conversely, would succumb outside of these ranges either for physiological reasons or competition from another type better suited to the conditions.

The annual areas (km²) associated with each of the depth ranges were then modelled as a hydraulic indicator (see Table 4.1) and denoted as linked indicators for the relevant vegetation indicator in Table 5.13.

The full list of linked indicators for each vegetation indicator is provided in Section 5.3.2, together with the response curves describing each of the links, with explanations for the shape of the response curves.

5.3.1.1 Composite indicators for vegetation

Two composite indicators (denoted in the DSS as C:*) were calculated for vegetation:

- C: Area reeds + Area papyrus, which combined the areas of reeds and papyrus.
- C: Indigenous Plant Abundance, which combined the area of reeds, papyrus, uncultivated channel margins and rooted aquatics.

Weights used for these composite indicators are shown in Table 5.12, where the numbers represent the relative contribution of each vegetation type to the composite at each site.

	C: Area reeds +	- Area papyrus	C: Indigenous Plant Abundance				
Site Area reeds		Area papyrus	C: Area reeds + Area papyrus	Area uncultivated ch margin	Rooted aquatics		
Northern	24	1	20	0.1	1		
Western	12	1	1	0.1	-		
Eastern	5	1	5	0.1	1		
Central	4	1	1	0.1	1		
Southern	10	1	1	0.1	1		

Table 5.12 Weights for composite vegetation indicators

5.3.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the vegetation indicators are tabulated as follows:

Table 5.13	Area cultivated floodplain: Linked indicators, response curves and motivations
------------	--

- Table 5.14
 Area uncultivated floodplain: Linked indicators, response curves and motivations
- Table 5.15
 Area reeds: Linked indicators, response curves and motivations
- Table 5.16Area papyrus: Linked indicators, response curves and motivations
- Table 5.17
 Area rooted aquatics: Linked indicators, response curves and motivations

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

Table 5.13 Area cultivated floodplain: Linked indicators, response curves and motivations (Central)

inked inc	dicator and	d respons	se curve	Explanation
🗹 Wet: V	eg wet area ().2-0.5m [F	season]	
Desc	km2	Y1	Y2	200 Cultivated areas are inundated least often. In dry
Min	0.000	-5.000		periods the extent of cultivation is greater as a
Min Base	4.425	-2.700		¹⁵⁰ greater area of the marsh is dry. During wet
	6.465	-1.300		
Median	8.505	0.000		¹⁰⁰ [©] periods people migrate out of the marsh
	10.826	1.600		₅₀ abandoning their cultivated fields that get
Max Base	13.148	2.200		inundated.
Max	15.120	2.500		2 4 6 8 10 12 14

inked in	dicator and	l response	curve	Explanation
Chang	ge in flood exte	nt [F season]		-
Desc Min	%Base 0.000	Y1 1	200	Sedimentation leads to channelisation, which leads to a reduction in flooding extent as higher
Min Base	25.000	2.500		water levels are needed to breach the artificial
Median	100.000	0.000	· · · · · · · · · · · · · · · · · · ·	levees/berms. Reduced flooding extent increases
Max Base Max	150.000 200.000 250.000	-2.900 -4.500 -5.000	0 50 100 150 200 250	the abundance of dry floodplain available to cultivation.
Cultivat	tion [D season %Base	-	/2	More floodplain areas are cultivated to sustain the increased need for cultivated produce; in
Min	0.000	-1.400	150	response to increased access to the marsh,
Min Base	25.000 50.000	-1.100 -0.700	100	immigration of people in dry periods. 10% of the
Median	100.000	0.000	°	Central site is currently cultivated so an increase in cultivation will disproportionately increase the
Max Base	200.000	2.000		extent of cultivated fields when compared to the
Max	250.000	2.100	0 50 100 150 200 250	decrease in extent as pressure decreases.

Table 5.14 Area uncultivated floodplain: Linked indicators, response curves and motivations
(Central)

inked in	dicator an	id respo	nse cur	ve	Explanation
Cultivat Desc Min Base Min Base Median Max Base Max	ion [D season %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 1.500 1.300 1.000 -2.000 -2.500 -3.000	Y2	140 120 100 80 80 80 9 80 9 80 9 80 9 9 9 9 9 9 9	If cultivation is low the abundance of fallow abandoned fields increases in extent. This increases in direct proportion to the decrease in cultivated fields.
Wet: Wet: Wet: Wess Desc Min Min Base Median Max Base Max	Veg wet area km2 0.000 4.582 6.603 8.623 9.711 10.800 12.420	0.6-0.85m Y1 -5.000 -2.700 -1.300 0.000 0.840 1.400 1.900	[F season] Y2	160 140 120 80 80 60 °° 40 20 0 2 4 6 8 10 12	Wet season flooding depths of >0.6 m are unsuitable for cultivation (Ellery <i>et al.</i> 2003; Gaudet 1992 Keddy 2005; McCarthy <i>et al.</i> 1986). Thus, there are areas of the Marsh that, in drier years, are burnt, cleared and cultivated, or grazed. These fields lie fallow in wet years, during which time <i>Cynodon dactylon, Phragmites</i> <i>australis, Miscanthus junceus</i> will grow.
Chang Desc Min Min Base Median Max Base Max	e in flood exte %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	ent [F seas Y1 -5.000 -4.300 -2.900 0.000 2.100 2.700 3.100	Y2	300 250 150 100 0 50 100 150 200 250	Sedimentation leads to channelisation, which leads to a reduction in flooding extent as higher water levels are needed to breach the artificial levees/berms. Increased extent of flooding floods cultivated areas that may then recover back to being vegetated by indigenous grasses and reeds.

	a respo	nse curv		Explanation
				Phragmites grows where inundation depths do
				not exceed 1.3 m for longer than 10 days, or 1.1
				m for 30 days each year (Gaudet 1992). Stage
/eg wet area ().9-1.1m [F	season]		fluctuations greater than 1 m also limit the
km2	Y1	Y2	140	distribution of this plant (Tulbure and Johnston
0.000	-5.000		120	
4.433	-2.400		100 8	2010). Phragmites can survive inundation of 0.6
6.013	-1.200		80 80	m for some time but juveniles perish at this stag
				(Pagter et al. 2005). Phragmites does best over
				alternating wet/dry years as are able to tolerate
9.597	1.500	0	2 4 6 8	drying better than other competitors for this
				niche (Tyhpa domingensis, Vossia cuspidata,
				Phragmites mauritianus, Papyrus cyperus; Keddy
				2005).
				2003):
e in flood exte	nt [F seas	on]		
%Base	Y1	Y2	300	Sedimentation leads to channelisation, which
0.000	-5.000		250	leads to a reduction in flooding extent as higher
25.000	-4.300			
50.000	-2.900			water levels are needed to breach the artificial
100.000	0.000			levees/berms. Increased extent of flooding
150.000	2.100			favours plant growth, flowering and seed set.
				avours plant growth, nowening and seed set.
250.000	3.100		50 100 150 200 250	
tion [D seasor	1			If cultivation is low, during wet years, the
-	-	¥2		
				abundance of <i>Phragmites</i> increases as fewer ree
				beds are cleared for cultivation. This is set at 50
			80 8	of the proportion given over to fallow fields,
				which are favoured for cultivation since
150.000	-1.000		40	
200.000	-1.200		20	Phragmites occupies surfaces inundated to a
250.000	-1.500		50 100 150 200 250	greater extent than fallow fields.
tina pressure	[E season]			
		¥2		
		12	100	Obreamites reads are hervested for making a
			80	Phragmites reeds are harvested for making a
50.000	0.230		60 8g	variety of handcrafts (baskets, drying mats (fish,
30.000	0.000			rice), fences, hats, huts); the more harvesting
100,000			40 ×	
100.000		I I		takes place the fewer reads remain
100.000 150.000 200.000	-1.000		20	takes place the fewer reeds remain.
	km2 0.000 4.433 6.013 7.593 7.969 8.345 9.597 %Base 0.000 25.000 25.000 150.000 250.000 150.000 250.000 100.000 250.000 0.000 250.000 100.000 25.000 100.000 250.000 100.000 250.000 100.000 250.000 100.000 250.000 100.000 250.000 100.000 250.000 250.000	km2 Y1 0.000 -5.000 4.433 -2.400 6.013 -1.200 7.593 0.000 7.593 0.000 7.969 0.200 8.345 0.600 9.597 1.500 %Base Y1 0.000 -5.000 25.000 -4.300 50.000 -2.900 100.000 0.000 150.000 2.100 200.000 2.700 250.000 3.100 tion [D season] %Base Y1 0.000 1.000 25.000 0.900 50.000 -1.000 250.000 -1.000 250.000 -1.000 250.000 -1.000 250.000 -1.000 250.000 -1.500 witting pressure [F season] %Base Y1 0.000 0.500 250.000 0.500 <td>0.000 -5.000 4.433 -2.400 6.013 -1.200 7.593 0.000 7.593 0.000 7.969 0.200 8.345 0.600 9.597 1.500 %Base Y1 Y2 0.000 25.000 -4.300 55.000 -2.900 100.000 0.000 150.000 -2.900 100.000 0.000 150.000 2.100 200.000 2.700 250.000 3.100 0 0 tion [D season] 9 %Base Y1 Y2 0.000 1.000 250.000 -1.200 250.000 -1.500 0 0 ting pressure [F season] 9 %Base Y1 Y2 0.000 0.500 0 250.000 -1.500 0 </td> <td>$\frac{\text{km2}}{1200000} \frac{\text{Y1}}{1200000} \frac{\text{Y2}}{120000000000000000000000000000000000$</td>	0.000 -5.000 4.433 -2.400 6.013 -1.200 7.593 0.000 7.593 0.000 7.969 0.200 8.345 0.600 9.597 1.500 %Base Y1 Y2 0.000 25.000 -4.300 55.000 -2.900 100.000 0.000 150.000 -2.900 100.000 0.000 150.000 2.100 200.000 2.700 250.000 3.100 0 0 tion [D season] 9 %Base Y1 Y2 0.000 1.000 250.000 -1.200 250.000 -1.500 0 0 ting pressure [F season] 9 %Base Y1 Y2 0.000 0.500 0 250.000 -1.500 0	$\frac{\text{km2}}{1200000} \frac{\text{Y1}}{1200000} \frac{\text{Y2}}{120000000000000000000000000000000000$

Table 5.15 Area reeds: Linked indicators, response curves and motivations (Central)

 Table 5.16
 Area papyrus: Linked indicators, response curves and motivations (Central)

nked ind	dicator an	d respo	nse cu	rve				Explanation
☑ Wet: V	'eg wet area 1	.15-01.6m	[F seaso	on]				Areas flooded in excess of 1.3 m support rooted Papyrus (Gaudet 1992) up to a maximum of 1.5 m in stage (Sutcliffe 1974). Papyrus requires
Desc	km2	Y1	Y2				120	permanently flooded rhizomes to persist; the
Min	0.000	-5.000					100 .	
Min Base	9.090	-2.700						rhizomes cannot be aerially exposed (Ellery et al.
	13.136	-1.300			1		80 🕺 ; 60 🛱	1995). Papyrus is drowned out at deeper depths
Median	17.183	0.000			1		40	if it does not detach from the substrate to form a
	17.418	0.050						
Max Base	17.652	0.100					20	sudd, which can take place over depths of 10m
Max	20.300	1.200		0 5	10	15	20	(Whigham <i>et al.</i> 1993). <i>Papyrus</i> is favoured by
								stable water levels and cannot cope when these change rapidly as adjustments in rhizome height

Linked ir	ndicator ar	nd respo	nse cu	rve	Explanation
					are slow (Denny 1985).
Change Desc Min Min Base Median Max Base Max	e in flood exter %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	nt [F seaso Y1 -5.000 -4.200 -2.900 0.000 2.100 2.700 3.100	on] Y2	300 250 200 g 150 c 100 s ² 50 0 50 100 150 200 250	Sedimentation leads to channelisation, which leads to a reduction in flooding extent as higher water levels are needed to breach the artificial levees/berms. Increased extent of flooding stimulates plant growth, flowering and seed set.
Cultiva Desc Min Min Base Median Max Base Max	tion [T2 seas %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	von] Y1 1.000 0.900 0.600 0.000 -1.000 -1.200 -1.500	Y2	120 100 80 60 40 20 0 50 100 150 200 250	If cultivation is low, during wet years, the abundance of <i>Cyperus papyrus</i> increases as fewer papyrus beds are cleared for cultivation. This is set at 50% of the proportion given over to fallow fields, which are favoured for cultivation since Papyrus occupies surfaces inundated to a greater extent than <i>Phragmites</i> fields.
Harve Desc Min Min Base Median Max Base Max	sting pressure %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	[F season] Y1 0.500 0.300 0.100 0.000 -1.000 -2.000 -2.500	Y2		Papyrus is harvested for a variety of handcrafts (coal making, fences, mattresses, window frames, brooms, baskets); the more harvesting the less sedge remains.

Table 5.17	Area rooted aquatics:	Linked indicators,	response curves and	I motivations (Central)
------------	-----------------------	--------------------	---------------------	-------------------------

dicator an	id respo	nse curv	Explanation
en wetted are	a >0.6m [D season]	Rooted aquatics (Nymphaea lotus, Ceratophyllum demersum) require water depths between 0.3-
km2 0.000 3.042 4.970 6.897 8.438 9.977 11.474	Y1 -2.900 -1.700 -0.900 0.000 0.700 1.400 1.700	Y2	0.9 m to grow optimally (www.plantzafrica.com). Decreases in depth below 0.6 m will begin to stress the plant and depths lower than 0.3 m will strand the plant. Stranding is tolerated for short periods in the growing season. Depths greater > 0.6 m in the dry season will provide abundant suitable habitat for growth. Set at 50%, half the depth before stress is maximised.
%Base 0.000 25.000 50.000 100.000 150.000 200.000	Y1 -5.000 -4.300 -2.900 0.000 2.100 2.700	V2	Sedimentation leads to channelisation, which leads to a reduction in flooding extent as higher water levels are needed to breach the artificial levees/berms. Increased extent of flooding increases the habitat available for rooted aquatics.
	eg wetted are km2 0.000 3.042 4.970 6.897 8.438 9.977 11.474 e in flood exte %Base 0.000 25.000 50.000 100.000 150.000	eg wetted area >0.6m [km2 Y1 0.000 -2.900 3.042 -1.700 4.970 -0.900 6.897 0.000 8.438 0.700 9.977 1.400 11.474 1.700 e in flood extent [F seas %Base Y1 0.000 -5.000 25.000 -4.300 50.000 -2.900 100.000 0.000 150.000 2.100	0.000 -2.900 3.042 -1.700 4.970 0.900 6.897 0.000 8.438 0.700 9.977 1.400 11.474 1.700 * 0

Linked indicator and response curve							Explanation				
Harves	Harvesting pressure [F season]						Nymphaea lotus and Trapa natans are harvested,				
Desc	%Base	Y1	Y2						17	20	Nymphaea for its bulbs and Trapa for the milky
Min	0.000	1.000			<u> </u>	_			10	00	substance contained in the fruits. The Central site
Min Base	25.000	0.500						_	80) Q	is not densely populated and the rooted aquatics
	50.000	0.150							-	3ase	
Median	100.000	0.000								%	present are available for harvest. If harvesting
	150.000	-1.000							40	-	pressure decreases the abundance of rooted
Max Base	200.000	-1.500							20)	aquatics will increase, if harvesting pressure
Max	250.000	-2.000		Ō	50	100	150	200	250		increases the abundance will decrease.

Table 5.18 Area uncultivated channel margin: Linked indicators, response curves and motivations (Central)

Linked ir	ndicator an	nd respo	nse curve	2	Explanation
					Channel margins inundated to a greater extent year on year will drown cultivated crops. Banks
🗹 Mean a	nnual depth [[F season]			
Desc Min Min Base Median	m 1.278 1.346 1.674 2.003 2.437	Y1 -2.000 -1.800 -0.850 0.000 1.500	Y2	200 150 100 8 50	inundated less regularly and to a lesser extent will be favoured for cultivated crops year on year. During wet years, fewer banks will be available to cropping and regrowth of <i>Phragmites, Vossia,</i> <i>Tyhpa</i> and <i>Papyrus</i> will take place. Conversely, naturally vegetated channel margins can be
Max Base Max	2.871 3.302	2.050 2.400		1.5 2 2.5 3	cleared/burnt/harvested and then cultivated within one dry year and cultivated for that period.
Change Desc Min Min Base Median Max Base Max	e in flood exte %Base 0.000 25.000 50.000 100.000 150.000 200.000 200.000	nt [F seas Y1 -5.000 -4.300 -2.900 0.000 2.100 2.700 3.100	on] Y2	300 250 200 % 150 200 250 50 100 150 200 250	Sedimentation leads to channelisation, which leads to a reduction in flooding extent as higher water levels are needed to breach the artificial levees/berms. Increased extent of flooding stimulates plant growth, flowering and seed set.
Cultiva Desc Min Min Base Median Max Base	tion [F season %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 1.500 1.000 0.500 0.000 -0.500 -1.000 -1.500	Y2	140 120 100 80 60 80 40 20 50 100 150 200 250	More uncultivated banks will be cleared and cultivated as cultivation pressure increases.

5.4 Aquatic invertebrates

5.4.1 Invertebrates indicators

Two invertebrate indicators were selected for the DRIFT DSS. These are defined in Table 5.19, along with representative species and an indication of the main variables likely to drive change in the indicator.

Table 5.19Invertebrate indicators, representative species and their main links to water levels in
the Marsh

Indicator	Definition and/or representative species	Driving variables
Invertebrate community health	Community composition and health of aquatic macro- invertebrates.	Largely influenced by the ecological condition of the marsh and the condition and diversity of aquatic habitat.
Invertebrate pests	Mosquitoes and blackflies	Berner (1955) recorded 15 species of mosquito and blackfly along the Shire River, nine of these were found at the Elephant Marsh. Some <i>Anopheles</i> mosquitoes carry Malaria and Filaria, but these are more commonly found near human settlements in drying pools with algae rather than in the main Marsh (Berner 1955).

5.4.1.1 Composite indicators for invertebrates

None.

5.4.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the invertebrate indicators are tabulated as follows:

Table 5.20	Invertebrate community health: Linked indicators, response curves and motivations
	(Central)

 Table 5.21
 Invertebrate pests: Linked indicators, response curves and motivations.

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

Table 5.20 Invertebrate community health: Linked indicators, response curves and motivations (Central)

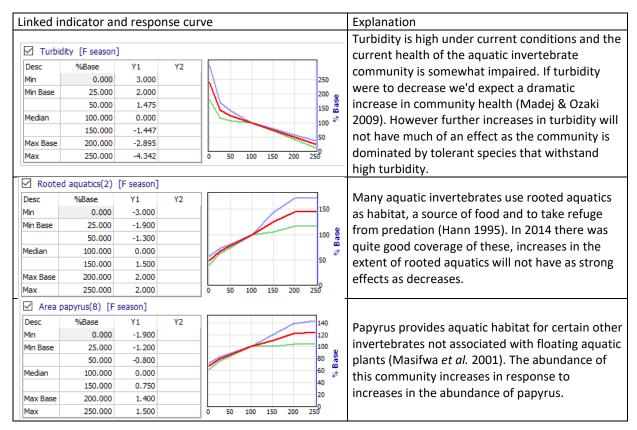


Table 5.21 Invertebrate pests: Linked indicators, response curves and motivations (Central)

inked ir	ndicator ar	nd respo	nse cur	ve	Explanation
✓ Floatin	g exotics [D s	season]			
Desc Min Min Base Median Max Base Max	%Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119	Y2		There are numerous mosquito species that occu in and around the Marsh. Berner (1955) recorde 15 species along the Shire River, of which at leas nine were recorded within the Elephant Marsh. Most of the species occurring in the marsh were associated with floating aquatics such as <i>Pistia</i> and <i>Azolla</i> . Other nuisance mosquitoes were
	ncultivated floo				associated with wet grasses. Malaria and Filaria
Desc	%Base	Y1	Y2		carrying Anopheles mosquitoes occur mainly nea
Min Base	0.000	-2.895		150	human settlements breeding in stagnant pools
Min Base	25.000	-2.1/1		100 8	
					with algae rather than in the marsh itself (Berne
Median	100.000	0.000		50 %	1955). Both relationships are positive, but
	150.000	1.475		50	tailoring off at large increases.
Max Base	200.000	2.050			
Max	250.000	2.119		0 50 100 150 200 250	

5.5 Fish

5.5.1 Fish indicators

Four fish indicators were selected representing four flow-linked fish guilds, based on the main species typifying the Elephant Marsh, including those of important ecological or livelihoods value. These are defined in Table 5.22 along with reasons for their selection and predicted changes in response to changing water levels.

Indicator	Representative species	Driving variables
Floodplain migrants	Oreochromis mossambicus, Clarius gariepinus	Closely linked to area of inundation and duration of flooding (Willoughby and Tweddle 1978; Bowen 1979; Bruton and Jackson 1983; Skelton 2001; Chimatiro 2004;
River channel fish	Hydrocynus vittatus	Welcomme <i>et al.</i> 2006). Linked to extent and duration of inundation, especially area of shallow water habitats for breeding (Jackson 1961; Skelton 2001; Thorstad <i>et al.</i> 2002; Chimatiro 2004; Welcomme <i>et al.</i> 2006).
Demersal fish	Distichodus spp., Mormyrops spp., Labeo spp.	Sensitive to significant reduction in channel depth low flow velocity (Skelton 2001; Welcomme <i>et al.</i> 2006).
Channel margin fish	Barbus spp., Micropanachax spp.	Closely linked to channel depth and the total area of uncultivated margin (Skelton 2001; Thorstad <i>et al.</i> 2002; Welcomme 1985).

Table 5.22 Fish indicators, representative species and their main links to water levels in the Marsh

5.5.1.1 Composite fish indicators

Two composite indicators (denoted in the DSS as C:*) were calculated for fish:

- C: Fish abundance (crocs), which combined estimated abundances of floodplain migrants, river channel fish and demersal fish on the basis of biomass.
- C: Overall fish abundance, which combined estimated abundances of floodplain migrants, river channel fish, demersal fish, and channel margin fish on the basis of biomass.

Weights used for these composite indicators are shown in Table 5.23, where the numbers represent the relative contribution of each fish guild to the composite at each site.

Table 5.23 Weights for composite fish indicators

	C: Fish	abundance (cro	ocs)	C: Overall fish al	bundance	C: Demersal	C: Channel
Site	Floodplain migrants	River channel fish	Demersal fish	C: Fish abundance (crocs)	Channel margin fish	fish (WM)	margin fish (WM)
Northern						1	0.8
Western						1	0.9
Eastern	0.6	0.1	0.3	1	0.5	0.9	1
Central						1	1
Southern						0.9	1

5.5.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the fish indicators are tabulated as follows:

- Table 5.24Floodplain migrant fish: Linked indicators, response curves and motivations.
- Table 5.25River channel fish: Linked indicators, response curves and motivations.
- Table 5.26Demersal fish: Linked indicators, response curves and motivations.
- Table 5.27Channel margin fish: Linked indicators, response curves and motivations.

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

Linked in	dicator an	d respo	nse cur	ve	Explanation	
	ive Fish: area 0	-	-			Shallow water habitats (<2 m) on floodplains and lake margins are the main breeding areas for
Desc	km2	Y1	Y2		100	most floodplain migrant species (Bruton and
Min	0.000	-0.450			80	Jackson 1983). High abundances of diatoms occur
Min Base	24.751	-0.210				, .
	32.754	-0.180			60 🎇	in waters between 0.5 and 1.5 m, which are very
Median	40.757	0.000			40 👷	important in the diet of juvenile O. mossambicus
	41.646	0.020			20	(Bowen 1979). Likewise, juvenile <i>C. gariepinus</i>
Max Base	42.536	0.040				inhabit shallow inundated areas that have an
Max	48.917	0.090		0 10 20 30 40	,0	
						abundant food source, including <i>O. mossambicus</i> fry (Bruton 1979).

Table 5.24	Floodplain mig	rant fish: Linked indicator	s, response curves an	d motivations (Central)
	1 IOOuplain Ing	and mana Linkea maleator	s, response curves and	

Linked in	dicator an	d respo	nse cur	ve	Explanation
	uration [F sea days 0.000 2.000 76.500 151.000 248.500		Y2	ve	Explanation During seasonal flooding events floodplain migrant species fish undergo breeding migrations onto floodplains and marginal lagoons, returning to the main channels when water levels fall (Skelton 2001). In the Lower Shire, <i>O.</i> <i>mossambicus</i> might spawn throughout the year when conditions allow it to, although peak spawning occurs from October to February (Skelton 2001; Chimatiro 2004). <i>C. gariepinus</i> has a protracted spawning season from September to March, with peak spawning activity occurring
Max Base Max	346.000 397.900	0.140		0 100 200 300 400	 between October and December (Chimatiro 2004). For both species, higher and longer floods can result in stronger year-class strength, whereas juvenile growth and recruitment tends to suffer in short flood seasons when floodplain habitat is limited in extent and duration (Chimatiro 2004).
Change Desc Min Min Base Median Max Base Max	e in flood exte %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	nt [F sease Y1 -2.000 -1.600 -1.200 0.000 1.350 1.550	200] Y2		 The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, higher and longer
Area u Desc Min Min Base Median Max Base Max	ncultivated flo %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	odplain(6) Y1 -0.220 -0.200 -0.120 0.000 0.350 0.550 0.580	[F season Y2		Most breeding and juvenile floodplain migrants have an affinity for submerged vegetated habitats, which provide or host an abundance of food and serve as a predation refuge (Skelton 2001; Welcomme 1985). Decaying vegetation during the high water level further enriches the detritus, which is a primary food source for <i>O.</i> <i>mossambicus</i> (Weyl and Hecht 1998) and a significant proportion of the diet of <i>C. gariepinus</i> during flood in the Lower Shire (Willoughby and Tweddle 1978).
Harves Desc Min Min Base Median Max Base Max	ting pressure %Base 0.000 25.000 100.000 150.000 200.000 250.000	[D season] Y1 1.500 1.450 0.000 -0.800 -1.200 -1.300	Y2	140 120 100 80 60 60 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	Small scale fisheries occur throughout the Elephants Marsh using four main gear types: gillnets, longlines, cast nets, and fish traps. Floodplain migrant species are a major component of the catch, in particular <i>C.</i> <i>gariepinus</i> and <i>O. mossambicus</i> (M. Manase, Malawi DoF, pers. comm.). Catches of these species ted to be largest during the flood season when fishermen have relatively easy access to fish in floodplains.

Linked ii	ndicator ar	ia i copo	iise cu	ve					Explanation
									Channel residents require sufficient river channe
Mean :	annual depth	[E concon]							habitat for most of the adult (non-breeding) life
									stages (Skelton 2001). <i>H. vittatus</i> prefer clean
Desc	m	Y1	Y2		_	_	1	100	
Min	1.278	-0.200					8	B0	water and utilise a range of depths, generally
Min Base	1.346	-0.120						50 🖁	favouring surface waters and shallow areas at
Madian	1.674	-0.060						ä	night (Thorstad <i>et al.</i> 2002). Very low flow is
Median	2.003	0.000					4	40 %	likely to negatively affect <i>H. vittatus</i> and most
Max Base	2.437 2.871	0.090					2	20	
Max base	3.302	0.120		1.5	2	2.5	3 0	D	other river channel species due to associated
I''ux	5.502	0.150		1 1.5	2	2.5	·		habitat loss, e.g. resulting in a narrow, shallow
									channel with periodic pools.
									During seasonal flooding events many channel
									fish, including <i>H. vittatus</i> , undergo breeding
☑ Wet d	luration [F sea	conl							
	-	-		- -					migrations onto floodplains and marginal
Desc	days	Y1	Y2				-	100	lagoons, returning back to the main channels
Min Min Bass	0.000	-0.120		-				BO	when water levels fall (Skelton 2001). As for
Min Base	2.000	-0.090 -0.035		-				8	other floodplain migrants (Chimatiro 2004),
Median	151.000	0.000		-				-	higher and longer floods can result in stronger
-icuidi i	248.500	0.000						40 ×	• •
Max Base	346.000	0.350					2	20	year-class strength, whereas juvenile growth and
Thank babe		0.400					400	0	recruitment tends to suffer when floodplain
Max	397,900			0 10	00 20	0 300	400	5	
Max	397.900	0.400		0 10	00 200	0 300	400	5	habitat is limited in extent and duration
Max	397.900	0.400		0 10	00 200	0 300	400	5	
Max	397.900	0.400		0 10	00 200	0 300	400	5	(Chimatiro 2004).
Max	397.900	0.4001		0 10	00 200	0 300	400		(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and
Max	397.900	0.4001		0 10	00 200	0 300	400	5	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for
Max	397.900	0.4001		0 10	00 200	0 300	400	5	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and
			F season	-	00 20	0 300	400	5	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for
☑ Wet: a	ave Fish: area (0.5-1.5m [-	00 200	0 300	400	1	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a
☑ Wet: a Desc	ave Fish: area (km2	D.5-1.5m [Y1	F season Y2	-	00 200	0 300	400	100	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among
✓ Wet: a Desc Min	ave Fish: area (km2 0.000	0.5-1.5m [Y1 -0.120		-	00 200	300	400	100	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and
☑ Wet: a Desc	ave Fish: area (km2 0.000 24.751	0.5-1.5m [Y1 -0.120 -0.110		-	00 200		400	100	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young
Wet: a Desc Min Min Base	ave Fish: area 0 km2 0.000 24.751 32.754	0.5-1.5m [Y1 -0.120 -0.110 -0.090		-	00 201		400	100 80 60 88	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and
✓ Wet: a Desc Min	ave Fish: area 0 km2 0.000 24.751 32.754 40.757	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000		-		0 300	400	100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces
✓ Wet: a Desc Min Min Base Median	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020		-		0 300	400	100 80 60 88	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These
Wet: a Desc Min Base Median Max Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040						100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is
Wet: a Desc Min Base Median Max Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020					400	100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used
Wet: a Desc Min Base Median Max Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040						100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey
Wet: a Desc Min Base Median Max Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040						100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used
Wet: a Desc Min Base Median Max Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040						100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic
✓ Wet: a Desc Min Min Base Median	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040						100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002).
Wet: a Desc Min Min Base Median Max Base Max	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536 48.917	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090	Y2					100 80 60 88 40 %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and
Wet: a Desc Min Min Base Median Max Base Max Base Max	e in flood exte	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090	Y2				40	100 80 40 % 20 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in
Wet: a Desc Min Base Median Max Base Max Base Max Desc Desc	ave Fish: area 0 km2 0.000 24.751 32.754 40.757 41.646 42.536 48.917 e in flood exte %Base	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090	Y2				40	100 80 40 % 20 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and
Wet: a Desc Min Min Base Max Base Max C Chang Desc Min	e in flood exte %Base 0.000	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 nt [F sease Y1 -2.500	Y2				40	100 80 40 % 20 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in
Wet: a Desc Min Min Base Median Max Base Max C Chang Desc	e in flood exte %Base 0.000 24.751 32.754 40.757 41.646 42.536 48.917	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 mt [F sease Y1 -2.500 -1.900	Y2				40	100 80 40 % 20 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, and likely including <i>H.</i>
Wet: a Desc Min Min Base Median Max Base Max Chang Desc Min Min Base	e in flood exte %Base 0.000 24.751 32.754 40.757 41.646 42.536 48.917	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 -1.900 -1.300	Y2				40	100 80 40 % 20 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, and likely including <i>H.</i> <i>vittatus</i> , higher and longer floods can result in
Vet: a Desc Min Base Median Max Base Max Max Desc Min	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536 48.917 e in flood exte %Base 0.000 25.000 50.000	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 -0.090 -1.300 -1.300 0.000	Y2				40	100 80 40 20 0 140 120 0 0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, and likely including <i>H.</i> <i>vittatus</i> , higher and longer floods can result in stronger year-class strength, whereas juvenile
Vet: a Desc Min Min Base Median Max Base Max Max Desc Min Base Min Base Min Base	e in flood exte %Base 0.000 24.751 32.754 40.757 41.646 42.536 48.917 %Base 0.000 25.000 50.000 100.000	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 0.090 -0.090 -1.300 -1.300 0.000 1.000	Y2				40	100 80 % 40 % 20 -0 140 120 100 % %	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, and likely including <i>H.</i> <i>vittatus</i> , higher and longer floods can result in stronger year-class strength, whereas juvenile growth and recruitment tends to suffer in short
Wet: a Desc Min Min Base Median Max Base Max Chang Desc Min Min Base	ave Fish: area (km2 0.000 24.751 32.754 40.757 41.646 42.536 48.917 e in flood exte %Base 0.000 25.000 50.000	0.5-1.5m [Y1 -0.120 -0.110 -0.090 0.000 0.020 0.040 0.090 -0.090 -1.300 -1.300 0.000	Y2		20		40	100 80 % 40 % 20 -0 140 120 100 % 80 % 40 20 -0	(Chimatiro 2004). Shallow water habitats (<2m) on floodplains and lake margins are the main breeding areas for most floodplain migrant species, including <i>H.</i> <i>vittatus</i> (Skelton 2001). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002). The extent of area available for breeding and developing fry is an important factor in determining annual population dynamics. For most floodplain migrants, and likely including <i>H.</i> <i>vittatus</i> , higher and longer floods can result in stronger year-class strength, whereas juvenile

Table 5.25 River channel fish: Linked indicators, response curves and motivations (Central)

Linked in	dicator ar	nd respo	nse curv	/e		Explanation
Area u Desc Min I Min Base Median Max Base Max	ncultivated flo %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	odplain(6) Y1 -0.290 -0.280 -0.140 0.000 0.300 0.480 0.500	[F season] Y2	0 50 100 150 200 2	100 80 40 % 20 50	Submerged vegetated habitats on floodplains serves as a predation refuge for eggs and fry. <i>H.</i> <i>vittatus</i> spawns on a sandy substrate in the vicinity of aquatic vegetation (Steyn <i>et al.</i> 1996). The females spawn a great number of eggs in shallow water, among the stems of grasses and other submerged and partly submerged vegetation and here the young live until the falling of the flood water forces them out of this refuge (Jackson 1961). These areas are probably not hunting grounds, as it is suggested that the pursuit method of attack used by <i>H. vittatus</i> is poorly-suited for capturing prey in lentic habitats containing much aquatic vegetation (Thorstad <i>et al.</i> 2002).
						Small scale fisheries occur throughout the
	ting pressure	-	-		_	Elephants Marsh using four main gear types: gillnets, longlines, cast nets, and fish traps. Many
Desc	%Base	Y1	Y2		140	
Min Door	0.000	1.600			120	river channel species are important in
Min Base	25.000 50.000	1.500			100 80 88 80 88	subsistence fisheries year round, and larger
Median	100.000	0.000			60 g	species, including <i>H. vittatus</i> , are also caught in
	150.000	-1.200			40	the recreational fishery that occurs mainly
Max Base	200.000	-2,500			20	throughout northern, western and southern
Max	250.000	-3.000		0 50 100 150 200	250	parts of the Elephant Marsh (T. Davies, MRAG,
		1				pers. obs.).

Table 5.26	Demersal fish: Linked indicators,	response curves and motivations (Central)
------------	-----------------------------------	---

	ndicator an	d respor	nse cu	rve						Explanation
Desc Min Min Base Median Max Base	annual depth m 1.278 1.346 1.674 2.003 2.437 2.871 3.302	[D season] Y1 -0.400 -0.350 -0.200 0.000 0.200 0.350 0.400	Y2	1.5	2	2.5	3	100 80 60 40 20 0	% Base	Demersal species require sufficient river channel habitat for most of the adult (non-breeding) life stages (Skelton 2001). Most demersal species are fairly resilient to changes in flow and are largely unaffected by anything but extreme physical hydrograph changes, e.g. adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by low flow (Welcomme <i>et al.</i> 2006). Very low flow is also likely to negatively
Max				_						affect was at demonstrated and stars done to a second start
										affect most demersal species due to associated habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools.
Dry: av	ve Channel vel		-							habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to
Dry: av	ve Channel vel m/s	Y1	ason] Y2					100	-	habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and
Dry: av Desc Min	ve Channel vel m/s 0.000	Y1 -3.000	-					100		habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by
Dry: av	ve Channel vel m/s	Y1	-							habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by low channel velocity (Welcomme <i>et al.</i> 2006).
Dry: av Desc Min	ve Channel vel m/s 0.000 0.312	Y1 -3.000 -0.400	-					80	Base	habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by
Dry: av Desc Min Min Base	ve Channel vel m/s 0.000 0.312 0.347	Y1 -3.000 -0.400 -0.050	-					80 60 40	% Base	habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by low channel velocity (Welcomme <i>et al.</i> 2006). Increases in sediment load associated with
Dry: av Desc Min Min Base	ve Channel vel m/s 0.000 0.312 0.347 0.381	Y1 -3.000 -0.400 -0.050 0.000	-					80	% Base	habitat loss, e.g. resulting in a narrow, shallow channel with periodic pools. In very low flow adult fish are susceptible to anoxic waters below the thermocline and eggs/larvae impacted by poor aeration caused by low channel velocity (Welcomme <i>et al.</i> 2006).

Linked in	ndicator ar	nd respo	nse cur	ve	Explanation			
Harvesting pressure [D season]								Small scale fisheries occur throughout the
Desc	%Base	Y1	Y2				140	Elephants Marsh using four main gear types:
Min	0.000	1.600					120	
Min Base	25.000	1.500					100	gillnets, longlines, cast nets, and fish traps. Many
	50.000	1.400					80 88	deep channel species are important in
Median	100.000	0.000					60 👷	subsistence fisheries year round, including
	150.000	-1.200				_	40	
Max Base	200.000	-2.500					20	Distichodus spp., Mormyrops spp., Labeo spp. (T.
Max	250.000	-3.000		0 50	100 150	200 25	50	Davies, MRAG, pers. obs.).
				0 50	100 150	200 25	8	Davies, MRAG, pers. obs.).

Table 5.27 Channel margin fish: Linked indicators, response curves and motivations (Central)

Linked i						
Mean a	annual depth	[F season]			1	Most river margin species have a strong association
Desc	m	Y1	Y2			with peripheral submerged and emergent vegetation at channel edges (Skelton 2001). Populations can
Min	1.278	-0.900		100		
Min Base	1.346	-0.800		80	. i	
	1.674	-0.300		60	as a	suffer when very low or very high channel levels
Median	2.003	0.000		40		restrict access to marginal vegetation, increasing
	2.437	0.250		20		
Max Base	2.871	0.260		20		predation risk by birds and fish predators such as H.
Max	3.302	0.270		1.5 2 2.5 3 0	1	<i>vittatus</i> (Thorstad <i>et al.</i> 2002).
Harves	sting pressure	[D season]				Small scale fisheries occur throughout the Elephants
Desc	%Base	Y1	Y2	140		Marsh using four main gear types: gillnets, longlines,
Min	0.000	1.600		120		
Min Base	25.000	1.500		100	• •	cast nets, and fish traps. Many river margin species
	50.000	1.400		80	Base	are important in subsistence fisheries, even small
Median	100.000	0.000		60		barbs and minnow caught in fine mesh nets,
	150.000	-1.200		40		especially during the dry season when floodplain fish
Max Base	200.000	-2.500		20		
Max	250.000	-3.000		0 50 100 150 200 250	- i	are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i>
Max Floatin Desc Min Min Base Median Max Base Max	250.000 ng exotics [F s %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	-3.000 eason] Y1 0.000 0.000 0.000 -0.200 -0.800 -1.500	Y2		5 1 1 1 1 1 1 1 1 1 1	are not available (T. Davies, MRAG, pers. obs.).
Max Floatin Desc Min Min Base Median Max Base Max Area u	250.000 ng exotics [F s %Base 0.000 25.000 100.000 150.000 250.000 250.000 ancultivated ch	-3.000 eason] Y1 0.000 0.000 0.000 -0.200 -0.800 -1.500 margin [F	season]		5 1 1 1 1 1 1 1 1 1 1	are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of
Max Floatin Desc Min Min Base Median Max Base Max Base Max Area u Desc	250.000 ng exotics [F s %Base 0.000 25.000 100.000 150.000 250.000 concentration %Base	-3.000 eason] Y1 0.000 0.000 0.000 -0.200 -0.200 -0.800 -1.500 margin [F stress of the			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat.
Max Floatin Desc Min Min Base Median Max Base Max Max Max Max Max Max Max Max	250.000 ng exotics [F s %Base 0.000 25.000 100.000 150.000 200.000 250.000 mcultivated ch %Base 0.000	-3.000 eason] Y1 0.000 0.000 0.000 -0.200 -0.200 -1.500 margin [F s Y1 -1.000	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> , spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i> .
Max Floatin Desc Min Min Base Median Max Base Max Max C Max Max Max Max Max Max Max Max	250.000 ng exotics [F s %Base 0.000 25.000 100.000 150.000 250.000 250.000 constant %Base 0.000 25.000	-3.000 eason] Y1 0.000 0.000 0.000 0.000 -0.200 -0.800 -1.500 margin [F s Y1 -1.000 -0.750	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on
Max Floatin Desc Min Min Base Median Max Base Max Area u Desc Min Min Base	250.000 ng exotics [F s %Base 0.000 25.000 100.000 150.000 250.000 250.000 constant %Base 0.000 25.000 25.000 constant %Base 0.000 con	-3.000 eason] Y1 0.000 0.000 0.000 0.000 -0.200 -0.800 -1.500 margin [F s Y1 -1.000 -0.750 -0.400	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i>
Max Floatin Desc Min Min Base Median Max Base Max Max Max Max Max Max Max Max	250.000 g exotics [F s %Base 0.000 25.000 100.000 100.000 250.000 250.000 %Base 0.000 25.000 50.000 100.000	-3.000 eason] Y1 0.000 0.000 0.000 0.000 0.000 -0.200 -0.800 -1.500 V1 Margin [F : Y1 -1.000 -0.750 -0.400 0.000	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins which are used as predation refugia,
Max Floatin Desc Min Min Base Median Max Base Max Desc Min Base Min Base Min Base	250.000 g exotics [F s %Base 0.000 25.000 100.000 100.000 250.000 250.000 %Base 0.000 25.000 50.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 150.000	-3.000 eason] Y1 0.000 0.000 0.000 0.000 0.000 -0.200 -0.800 -1.500 Wargin [F s Y1 -1.000 -0.750 -0.400 0.000 0.400	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> . spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i> . spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins which are used as predation refugia, spawning areas, nurseries, and feeding habitats
Max Floatin Desc Min Min Base Median Max Base Max Area u Desc Min Min Base	250.000 g exotics [F s %Base 0.000 25.000 100.000 100.000 250.000 250.000 %Base 0.000 25.000 50.000 100.000	-3.000 eason] Y1 0.000 0.000 0.000 0.000 0.000 -0.200 -0.800 -1.500 V1 Margin [F : Y1 -1.000 -0.750 -0.400 0.000	season]			are not available (T. Davies, MRAG, pers. obs.). Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins (Skelton 2001) which are used as predation refugia, spawning areas, nurseries, and feeding habitats (Welcomme 1985). However, high densities of floating exotic plant, such as water hyacinth which can cause low oxygen environments (Navarro and Phiri 2000), may impact the quality of river bank habitat. Most channel margin species including <i>Micropancha</i> spp. and <i>Barbus</i> spp. prefer vegetated habitats on river margins which are used as predation refugia,

5.6 Herpetofauna

5.6.1 Herpetofauna indicators

Three herpetofauna indicators were selected for the DRIFT DSS. These are defined in Table 5.28, along with representative species and an indication of the main variables likely to drive change in the indicator.

Indicator	Definition and/or representative species	Driving variables
Crocodiles	Nile crocodile, <i>Crocodylus niloticus</i>	Large Nile crocodiles (>3 m) are still common in the Shire River and Elephant Marsh, and do attack people (Kalokekamo 2000). Crocodiles influence the distribution of people in the marsh and also abundance of livestock, but in turn are hunted and are influenced by the overall health of the marsh and require a healthy fish population to persist in a particular region (Wallace and Leslie 2008).
Small reptiles	Floodplain and wetland reptile groups such as agama and skinks, snakes including pythons, cobras and smaller snakes as well as terrapins.	These floodplain species are sensitive to human disturbances and changes in the condition of aquatic and floodplain habitat (W. Branch Pers. Comm.).
Amphibians	Wetland amphibian species such as puddle and reed frogs.	These marshland species are sensitive to human disturbances and changes in the condition of aquatic and floodplain habitat (W. Branch Pers. Comm).

Table 5.28Herpetofauna indicators, representative species and their main links to water levels in
the Marsh

5.6.1.1 Composite indicators for herpetofauna

None.

5.6.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the herpetofauna indicators are tabulated as follows:

- Table 5.29
 Crocodiles: Linked indicators, response curves and motivations (Central)
- Table 5.30
 Small reptiles: Linked indicators, response curves and motivations
- Table 5.31
 Amphibians: Linked indicators, response curves and motivations

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of

the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

Linked in	ndicator an	d respons	e curve		Explanation
Harvee Desc Min Min Base Median Max Base Max	sting pressure %Base e 0.000 25.000 50.000 100.000 150.000 200.000 250.000 250.000		Y2	120 100 80 8 40 8 20 150	There is a mostly direct negative relationship between harvesting pressure and crocodiles. While there is some level of hunting of crocodiles within the marsh (Kosamu <i>et al.</i> 2012), little evidence of persecution was observed during the biodiversity surveys (Turpie <i>et al.</i> 2016). The more hunting takes place the lower will be the population present. Crocodile harvesting is currently not especially high in the central areas, and as such these areas will be more sensitive to increases in harvesting, whereas areas under high harvesting pressure will be more sensitive to drops in pressure.
C: Ind Desc Min Min Base Median Max Base Max	igenous plant a %Base 0.000 25.000 50.000 100.000 150.000 2200.000 250.000		Y2	120 100 80 % 60 60 20 250	Crocodiles spend most of their time in the water in channels and lakes, but also require un- inhabited banks to bask and breed (Fergusson 2010). The composite of the indigenous vegetation indicators provides a mix of all natural habitats (both fully aquatic and otherwise) and represents non-cultivated natural areas with close association to the water. As such, increases in the available habitat should reflect increases in population, however at some point the population would become limited by food.
C: Fish Desc Min Min Base Median Max Base Max	a abundance(cr %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 -0.900 -0.700 -0.300 -0.300 -0.300 0.000 0.800 0.800 1.000	PN] Y2 0 50 100 150 200	120 100 80 ∰ 60 ∰ 40 20 250	There is a direct positive relationship to food that tailors off since at some point the abundance of food will exceed demand; crocodiles are currently more limited by food than by habitat availability.

Table 5.29 Crocodiles: Linked indicators, response curves and motivations (Central)

inked indicator and response curve								Explanation
								Small reptiles are hunted opportunistically as an
Harves	ting pressure	[F season]						additional protein source in poor communities.
Desc	%Base	Y1	Y2				140	The harvesting pressure will be greatest in areas
Min	0.000	1.475					120	with higher human population such as the north
Min Base	25.000	1.208			_	-	100	and west of the marsh. The relationship to small
	50.000	0.832					80 88 80 88 80 88	reptile abundance is direct and negative. The
Median	100.000	0.000					40	
	150.000	-0.724					20	relationship will also be more sensitive to
Max Base	200.000	-1.447						reductions in harvesting in the north and west,
Mar	250,000	0.171			100	450 300	220	8
Max	250.000	-2.171		0 50	100	150 200	250	and more sensitive to increases in the central,
Max	250.000	-2.171		0 50	100	150 200	250	.
	250.000 Incultivated flo		[F seaso		100	150 200	250	and more sensitive to increases in the central,
			[F seaso Y2		100	150 200	250	and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and
🗹 Area u	uncultivated flo	odplain(6)	-		100	150 200		and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland
Area u	incultivated flo %Base	odplain(6) Y1	-		100	150 200	140	and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland species (Turpie <i>et al.</i> 2016). They are sensitive to
Area u Desc Min	incultivated flo %Base 0.000	odplain(6) Y1 -1.500	-		100	150 200	140 120 100 80	 and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland species (Turpie <i>et al.</i> 2016). They are sensitive to human disturbance through cultivation, fire and
Area u Desc Min	Incultivated flo %Base 0.000 25.000	Y1 -1.500 -1.200	-		100	150 200	140 120 100 80 60	and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland species (Turpie <i>et al.</i> 2016). They are sensitive to human disturbance through cultivation, fire and habitat alternation and so occur mostly on
Area u Desc Min Min Base	uncultivated flo %Base 0.000 25.000 50.000	V1 -1.500 -1.200 -0.900	-		100	150 200	140 120 100 80 60 40	 and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland species (Turpie <i>et al.</i> 2016). They are sensitive to human disturbance through cultivation, fire and
Area u Desc Min Min Base	uncultivated flo %Base 0.000 25.000 50.000 100.000	V1 -1.500 -1.200 -0.900 0.000	-		100	150 200	140 120 100 80 60	and more sensitive to increases in the central, south and east. Small reptiles comprise mainly savannah and floodplain species, rather than marsh or wetland species (Turpie <i>et al.</i> 2016). They are sensitive to human disturbance through cultivation, fire and habitat alternation and so occur mostly on

Table 5.30 Small reptiles: Linked indicators, response curves and motivations

Table 5.31 Amphibians: Linked indicators, response curves and motivations

inked in	ndicator ar	nd respo	nse cu	rve	Explanation
🗹 C: Indig	genous plant a		-	n]	Amphibian abundance is limited by suitable habitat and so responds positively to the
Desc	%Base	Y1	Y2	300	abundance of indigenous plants as a proxy for
MIN	0.000	-5.000		250	marsh habitat in good and suitably wet condition.
Min Base	25.000	-4.342		200 8	Frogs require water for essential parts of their
	50.000	-2.895		200 8	
Median	100.000	0.000		150 -	lifecycle but are able to inhabit a range of wetted
	150.000	2.119		100 ~	habitats (de Preez and Carruthers 2009). The
Max Base	200.000	2.762		50	relationship is positive as abundance of
Max	250.000	3.138		0 50 100 150 200 250	
					amphibians increases with increased abundance
					of indigenous plants.

5.7 Mammals

5.7.1 Mammal indicators

Two mammal indicators were selected for the DRIFT DSS. These are defined in Table 5.32, along with representative species and an indication of the main variables likely to drive change in the indicator.

Table 5.32 Mammal indicators, representative species and their main links to water levels in the Marsh Marsh

Indicator	Definition and/or representative species	Driving variables
Hippos	Hippopotamus, Hippopotamus amphibius	Hippos are hunted and killed to protect cultivated fields. They prefer deeper river channels in the centre of the marsh, away from human habitation (Turpie <i>et al.</i> 2016). They prefer grazing floodplain grasses but may also eat grasses from the channel margins (Pienaar <i>et al.</i> 1996). They also play an important role in the marsh ecosystem, maintaining channels and assisting with nutrient recycling (McCarthy et al 1998).
Small mammals	Small mammal abundance. Includes rodents, such as <i>Mastomys</i> and <i>Otomys</i> , and other small carnivores, such as mongeese.	These floodplain species are sensitive to human disturbance and changes in habitat condition and diversity (Avenant 2011). These groups are also hunted opportunistically as a food source for humans.

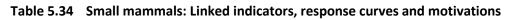
5.7.1.1 Composite indicators for mammals

None.

5.7.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the mammal indicators are tabulated as follows:

 Table 5.33
 Hippos: Linked indicators, response curves and motivations (Central).


Table 5.34Small mammals: Linked indicators, response curves and motivations.

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

inked i.	ndicator an	id respo	nse cur	ve	Explanation
Area of Desc Min Min Base Median Max Base Max	Uncultivated flo %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	odplain(6) Y1 -2.500 -2.000 -1.500 0.000 1.000 1.500 1.750	[F season Y2	140 120 100 % 80 % 40 20 0 50 100 150 200 250	In 2014 hippos competed with humans for grazing land as they forage on uncultivated floodplains in close proximity to cultivated fields (Chansa <i>et al.</i> 2011). If the area of uncultivated floodplain decreases hippos may be forced to forage in cultivated fields and this will lead to their being culled to protect the fields.
C: Ind Desc Min Min Base Median Max Base Max	igenous plant a %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Y1 -4.500 -4.342 -2.895 0.000 2.119 2.500 2.700	[F seasor Y2		Hippos retire in the densely vegetated parts of the marsh during the day (Field 1970) preferring to spend most of their time away from humans (J.Turpie Pers. Obs.). The abundance of indigenous plants is used as a proxy for these densely vegetated refugia bearing a strong positive relationship to increases in their abundance. The relationship levels off at higher percentages as other density dependent factors come into play (Theophile <i>et al.</i> 2012).
Harves Desc Min Min Base Median Max Base	sting pressure %Base 0.000 25.000 50.000 100.000 150.000 200.000	[F season] Y1 1.475 1.208 0.832 0.000 -0.724 -1.447	Υ2	140 120 100 80 80 60 40 20	Hippos are not usually hunted but can be when food shortages are dire as they provide a large quantity of meat. Their populations have suffered extensively from poaching in the past (Kosamu <i>et</i> <i>al.</i> 2012) and thus react negatively to increased harvesting pressure.
Max	250.000	-2,171		0 50 100 150 200 250	nai vesting pressure.

Table 5.33 Hippos: Linked indicators, response curves and motivations (Central)

inked in	idicator ar	iu respo	inse cur	ve	Explanation
🗹 Area	cultivated flood	lplain(345)	[F season		
Desc	%Base	Y1	Y2	160	Cultivated floodplain, while not 100% natural,
Min	0.000	-3.000		140	still provides both habitat and food for small
Min Base	25.000	-2.000		100 % ;	
	50.000	-1.300			mammal species. As the area of these habitats
Median	100.000	0.000		60 8	increase so would the populations of small
	150.000	1.300		40	mammals
Max Base	200.000	1.700		0	manmais.
Max	250.000	1.900		0 50 100 150 200 250	
🗹 Area ui	ncultivated flo	odplain(6)	[F season]		
Desc	%Base	Y1	Y2	160	
Min	0.000	-3.000		140	Uncultivated floodplain provides both habitat
Min Base	25.000	-2.000		120	
	50,000	-1.300		100 8	and food for small mammal species. As the area
Median	100.000	0.000		80 📅	of these habitats increase so would the
	150.000	1.300		40	populations of small mammals.
Max Base	200.000	1,700		20	
Max	250.000	1,900		0 50 100 150 200 250	
	200,000	1.500		·	
Harves	sting pressure	[F season]]		
Desc	%Base	Y1	Y2	140	Small mammals are hunted opportunistically as a
Min	0.000	1.475		120	food source and for traditional muti (Avenant et
Min Base	25.000	1.208		100	al. 2014). Hippos are the only large mammal left
	50.000	0.832		80 8	
	100.000	0.000		80 00 88 80 89 80	while small mammals like rodents and mongoose
Median		-0.724		40	still survive in the marsh outside of the protected
Median	150.000			20	
Median Max Base	200.000	-1.447		20	areas.

5.8 Birds

5.8.1 Bird indicators

Seven bird indicators were selected for the DRIFT DSS. These are defined in Table 5.35, along with their representative species and an indication of the main variables likely to drive change in the indicator.

Indicator	Representative species	Driving variables
African skimmer	Rynchops flavirostris	Regional populations of African skimmers are limited by sandbank nesting sites (Harrison <i>et</i> <i>al.</i> 1997), it is uncertain if the birds currently breed within the marsh. As such their presence within the marsh is driven by available foraging habitat and food.
Cormorants	The White Breasted and Reed Cormorants.	Cormorant populations are limited by both food and available habitat. In addition they are susceptible to disturbance by humans.
Wading birds	Herons, egrets, ibises, storks and spoonbills.	Wading bird populations are limited by both food and available habitat. In addition they are susceptible to disturbance by humans.
Water fowl	Ducks and rallid species. Dominated by white-faced tree duck, knob-billed duck in this system.	Waterfowl populations are limited by both food and available habitat. In addition they are susceptible to disturbance and hunting by humans.
Waders	Wading birds in the Charadriiformes. Main species in the marsh include Little stint and Ruff.	Wading birds are limited by accessible foraging areas which occur in shallow water on the fringes of lakes.
Gulls and terns	Grey-headed Gulls, Whiskered and White-winged terns.	Gull and tern populations are limited by both food and available habitat.
Kingfishers	Kingfishers, dominated by the Pied kingfisher.	Kingfisher populations are limited by both food and available habitat.

Table 5.35	Bird indicators,	representative	species	and	their	main	links	to	water	levels	in t	he
	Marsh											

5.8.1.1 Composite indicators for birds

One composite indicator (denoted in the DSS as C:*) was calculated for fish:

• C: Bird abundance, which combined estimated abundances of all bird indicators on the basis of biomass.

Weights used for these composite indicators are shown in Table 5.36, where the numbers represent the relative contribution of each vegetation type to the composite at each site.

Table 5.36 Weights for composite bird indicators

Bird indicator	C: Bird abundance
African skimmer	1
Cormorants	7
Wading birds	100
Water fowl	45
Waders	30
Gulls and terns	8
Kingfishers	1

5.8.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the bird indicators are tabulated as follows:

 Table 5.37
 African skimmer: Linked indicators, response curves and motivations (Whole Marsh).

 Table 5.38
 Cormorants: Linked indicators, response curves and motivations (Whole Marsh).

- Table 5.39Wading birds: Linked indicators, response curves and motivations (Whole Marsh).
- Table 5.40Water fowl: Linked indicators, response curves and motivations (Whole Marsh).
- Table 5.41Waders: Linked indicators, response curves and motivations (Whole Marsh).
- Table 5.42Gulls and terns: Linked indicators, response curves and motivations (Whole Marsh).
- Table 5.43
 Kingfishers: Linked indicators, response curves and motivations (Whole Marsh).

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

inked in	dicator an	d respo	nse cu	rve		Explanation
🗹 Wet: a	ve Lake area (1+2) [F se	eason]			
Desc	km2	Y1	Y2		1.70	Skimmers forage by flying low over open water
Min	0.000	-5.000			100	with their lower mandible skimming the waters'
Min Base	35.669	-0.700				surface, closing when it intercepts a prey item.
	37.054	-0.500			80 % 60 8	
Median	38.440	0.000			~ ~	These birds require open areas of water to forage
	39.040	0.059			40	(Coppinger <i>et al.</i> 1998) and will leave the vicinity
Max Base	39.640	0.118			20	of the marsh if there are no open area of water.
Max	45.586	1.200		0 10 20 30 4	0 0	

Table 5.37 African skimmer: Linked indicators, response curves and motivations (Whole Marsh)

inkeu in	idicator an	d respo	nse cui	rve Explanation
C: Char Desc	nnel margin fisl %Base	h(WM) [Al Y1	l seasons Y2	Skimmers feed on small to medium sized fish
Min	0.000	-2.800		150 . (Coppinger <i>et al.</i> 1998), best represented by the
Min Base	25.000	-2.000		
	50.000	-0.900		
Median	100.000	0.000		as Barbus and Micropanch spp. As prey
	150.000	1.447		⁵⁰ abundance declines so too would the abundance
Max Base	200.000	2.000		of skimmers.
	250.000	2.050		0 50 100 150 200 256
Max C: Cha Desc	250.000 inge in flood ex %Base		ason] Y2	
C: Cha	inge in flood ex	ktent [F se	-	300 Reduced flooding extent decreases the areas of
C: Cha	nge in flood ex %Base	ktent [F se Y1	-	Reduced flooding extent decreases the areas of
C: Cha Desc Min	nge in flood ex %Base 0.000	tent [F se Y1 -5.000	-	Reduced flooding extent decreases the areas of shallow lake margins in which to forage, while
C: Cha Desc Min	nge in flood ex %Base 0.000 25.000	Ktent [F se Y1 -5.000 -4.342	-	Reduced flooding extent decreases the areas of shallow lake margins in which to forage, while increased flooding increases extent of shallow
C: Cha Desc Min Min Base	nge in flood ex %Base 0.000 25.000 50.000	Xtent [F se Y1 -5.000 -4.342 -2.895	-	Reduced flooding extent decreases the areas of shallow lake margins in which to forage, while increased flooding increases extent of shallow lake margins.
C: Cha Desc Min Min Base	nge in flood ex %Base 0.000 25.000 50.000 100.000	xtent [F se Y1 -5.000 -4.342 -2.895 0.000	-	Reduced flooding extent decreases the areas of shallow lake margins in which to forage, while increased flooding increases extent of shallow

Table 5.38 Cormorants: Linked indicators, response curves and motivations (Whole Marsh)

	idicator an	id respo	nse cu	rve			Explanation
C: Harv	esting pressur	e(WM) [F	season]				
Desc	%Base	Y1	Y2	~			
Min	0.000	0.600				100	Cormorants are not specifically hunted but are
Min Base	25.000	0.400		1		80 43	caught in hunting nets as by-catch, so suffer
	50.000	0.100				% Base	
Median	100.000	0.000				40 %	increased mortality when harvesting pressure
	150.000	-0.500				20	increases; a strong negative relationship.
Max Base	200.000	-0.800				20	
Max	250.000	-1.100		0 50	100 150 20	00 250	
C: Indi	genous plant a	hundance	[E season	1			
Desc	%Base	Y1	Y2				Cormorants have non-specific habitat
Min	0.000	-0.700				100	requirements being found in lake areas, small
Min Base	25.000	-0.500				80 10	
	50.000	-0.200				80 88 60 88	backwaters and floodplain wetlands (Turpie et c
Median	100.000	0.000				40 %	2016). They respond to the abundance of
	150.000	0.200					indigenous plants as a proxy for habitat
May Page	200.000	0.500				20	
Max Base							
Max	250.000	0.700	1	0 50	100 150 20	00 250	condition, a positive relationship.
Max C: Floo Desc Min Min Base Median Max Base Max	%Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	Fish [F sec Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119	Y2				Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp.,
Max C: Floo Desc Min Min Base Median Max Base Max C: Den	00000000000000000000000000000000000000	fish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso	Y2			150 100 80 50	Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so
Max C: Floo Desc Min Min Base Median Max Base Max C: Den Desc	odplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 nersal fish(WM %Base	rish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1	Y2				Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so their abundance increases if the abundance of
Max C: Floo Desc Min Min Base Median Max Base Max Max C: Den Desc Min	odplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 nersal fish(WM %Base 0.000	fish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895	Y2			150 100 88 50 200 250 150	Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so
Max C: Floo Desc Min Min Base Median Max Base Max C: Den Desc	odplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 enersal fish(WM %Base 0.000 25.000	fish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895 -2.171	Y2			150 100 88 50 200 250 150	Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so their abundance increases if the abundance of
Max C: Floo Desc Min Min Base Median Max Base Max Max C: Den Desc Min	odplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 nersal fish(WM %Base 0.000	fish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895	Y2			150 100 88 50 200 250 150 100 88 88	Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so their abundance increases if the abundance of
Max C: Floo Desc Min Min Base Median Max Base Max Desc Min Min Base	Adplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 250.000 250.000 250.000 250.000 %Base 0.000 25.000 50.000 50.000 100.000	rish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895 -2.171 -1.447 0.000	Y2			150 100 88 50 200 250 150	Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so their abundance increases if the abundance of
Max C: Floo Desc Min Min Base Median Max Base Max Desc Min Min Base	Adplain migrant %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 enersal fish(WM %Base 0.000 25.000 50.000	fish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895 -2.171 -1.447 0.000 1.475	Y2				Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from the floodplain migrant group, and <i>Mormyrops</i> spp., from the demersal fish group (Birkhead 1978) so their abundance increases if the abundance of
Max C: Floo Desc Min Max Base Median Max Base Max C: Den Desc Min Min Base Median	Adplain migrant %Base 0.000 25.000 50.000 100.000 150.000 250.000 250.000 250.000 250.000 250.000 250.000 %Base 0.000 25.000 50.000 100.000 150.000	rish [F sea Y1 -2.895 -2.171 -1.447 0.000 1.475 2.050 2.119) [F seaso Y1 -2.895 -2.171 -1.447 0.000	Y2				Cormorants forage for fish in lakes and river channels. Their diet comprise cichilds, from t floodplain migrant group, and <i>Mormyrops</i> sp from the demersal fish group (Birkhead 1978 their abundance increases if the abundance o

.inked m	ndicator an	d respo	nse cui	ve Explanation	
C: Han	vesting pressur	re(WM) [A	All seasons		
Desc	%Base	Y1	Y2		
Min	0.000	0.500		¹⁰⁰ Wading birds are not harvested as food dire	ctlv
Min Base	25.000	0.300		20	•
	50.000	0.100		60 G	
Median	100.000	0.000		abundance decreases as harvesting pressure	
	150.000	-0.100		increases.	
Max Base	200.000	-0.300		20	
	250.000	-0.500	C.A.II.	0 50 100 150 200 250	
Desc	genous plant a %Base	bundance Y1	[All seas Y2	ms] Waders have non-specific habitat requireme	
C: Indi Desc Min	genous plant a %Base 0.000	bundance Y1 -1.000	-	ms] Waders have non-specific habitat requirement being found near papyrus, on floating aquat	ic
C: Indi Desc Min	genous plant a %Base 0.000 25.000	V1 -1.000 -0.600	-	ms] Waders have non-specific habitat requirement being found near papyrus, on floating aquat	ic ie <i>et</i>
C: Indig	genous plant a %Base 0.000	bundance Y1 -1.000	-	Waders have non-specific habitat requirement being found near papyrus, on floating aquat plants and on uncultivated floodplains (Turp al. 2016). They respond to the abundance of	ic ie <i>et</i>
C: Indig Desc Min Min Base	genous plant a %Base 0.000 25.000 50.000	Y1 -1.000 -0.600 -0.400	-	waders have non-specific habitat requirement being found near papyrus, on floating aquat plants and on uncultivated floodplains (Turp <i>al.</i> 2016). They respond to the abundance of indigenous plants as a proxy for habitat	ic ie <i>et</i>
C: Indig Desc Min Min Base	genous plant a %Base 0.000 25.000 50.000 100.000	bundance Y1 -1.000 -0.600 -0.400 0.000	-	Waders have non-specific habitat requirement being found near papyrus, on floating aquat plants and on uncultivated floodplains (Turp al. 2016). They respond to the abundance of	ic ie <i>et</i>

Table 5.39 Wading birds: Linked indicators, response curves and motivations (Whole Marsh)

 Table 5.40
 Water fowl: Linked indicators, response curves and motivations (Whole Marsh)

inked ir	dicator an	id respo	nse cur	e Explanation
C: Har	vesting pressu	re(WM) [A	All seasons	
Desc	%Base	Y1	Y2	
Min	0.000	0.600		100
Min Base	25.000	0.400		Waterfowl are hunted for food in the Elephant
	50.000	0.100		Marsh (Kosamu <i>et al.</i> 2012) so their abundance
Median	100.000	0.000		will decrease as harvesting pressure increases.
	150.000	-0.500		
Max Base	200.000	-0.800		20
Max	250.000	-1.100		0 50 100 150 200 250
C: Indi Desc Min Min Base Median Max Base	genous plant a %Base 0.000 25.000 50.000 100.000 150.000 200.000	Y1 -0.800 -0.600 -0.200 0.000 0.800 1.200	[All seaso Y2	S) Waterfowl have non-specific habitat requirements being found in lake areas, channels and undisturbed marginal areas of the marsh (Turpie <i>et al.</i> 2016). They respond to the abundance of indigenous plants as a proxy for habitat condition, a positive relationship.
Max base				

_inked ir	ndicator an	d respoi	nse cur	/e Expl	anation
Wet: a	ave Birds: area	10cm [F s	eason]		
Desc Min	km2 0.000	Y1 -1.100	Y2		Il waders forage specifically in shallow water
Min Base	0.148	-0.700 -0.400			ike margins, or the muddy fringes (Harrison <i>et</i> .997). If these habitats are not available the
Median	0.228	0.000		₄₀ 🖏 birds	s will leave the vicinity and numbers will
Max Base Max	0.544 0.625	0.150 0.600		0 0.2 0.4 0.6 drop	0.
C: Cha	nge in flood ex %Base	tent (Fse Y1	ason] Y2		
Min	0.000	-5.000		300 Redu	uced flooding extent reduces the area of
Min Base	25.000	-4.342		250	n water from which to forage, while
	50.000	-2.895		200	
Median	100.000	0.000			eased flooding increases extent of open
	150.000	2.119		100 wate	er.
Max Base	200.000	2.762		50	
Max	250.000	3.138		0 50 100 150 200 250	

Table 5.41 Waders: Linked indicators, response curves and motivations (Whole Marsh)

Table 5.42 Gulls and terns: Linked indicators, response curves and motivations (Whole Marsh)

.iiiked in	dicator and	d respons	se curve	Explanation
C: Indi	genous plant a %Base	bundance Y1	[All seaso Y2	s]
Min	0.000	-0.800		Gulls and terns forage in a broad range of
Min Base	25.000	-0.600		habitate including open water marches and
	50.000	-0.300		
Median	100.000	0.000		a the should be a final to a subscript of the state of th
	150.000	0.300		
Max Base	200.000	0.800		²⁰ for habitat condition.
	250,000			0
	250.000 nnel margin fis	0.900 h(WM) [All	l seasons]	0 50 100 150 200 250
Max C: Char Desc Min Min Base Median	nnel margin fis %Base 0.000 25.000 50.000 100.000	h(WM) [All Y1 -0.800 -0.600 -0.400 0.000	l seasons] Y2	The diet of gulls and terns include insects, sma amphibians and crustaceans, but mainly consists of small fish (Harison et al 1997), typical of the channel margin fish group. The abundance of gulls and terns will increase in
C: Chai Desc Min Min Base Median	nnel margin fis %Base 0.000 25.000 50.000 100.000 150.000	h(WM) [Al Y1 -0.800 -0.600 -0.400 0.000 0.300		The diet of gulls and terns include insects, sma amphibians and crustaceans, but mainly consists of small fish (Harison et al 1997), typical of the channel margin fish group. The
C: Chai Desc Min Min Base	nnel margin fis %Base 0.000 25.000 50.000 100.000	h(WM) [All Y1 -0.800 -0.600 -0.400 0.000		The diet of gulls and terns include insects, sma amphibians and crustaceans, but mainly consists of small fish (Harison et al 1997), typical of the channel margin fish group. The abundance of gulls and terns will increase in

inked in	dicator and	d respons	se curve	Explanation
🗹 C: Indi	igenous plant a	abundance	[All sease	
Desc	%Base	Y1	Y2	Kingfishers are territorial animals so are less
Min	0.000	-1.000		¹⁰⁰ responsive to increase and decreases in hab
Min Base	25.000	-0.700		80 👷 and food as they are territorial (Harrison <i>et</i>
	50.000	-0.300		
Median	100.000	0.000		1997). The respond positively to increases in
	150.000	0.200		indigenous plant abundance as a proxy for
Max Base	200.000	0.400		²⁰ foraging and breeding habitat.
Max	250.000	0.700		50 100 150 200 250
🗹 C: Cha	nnel margin fis			
	%Base 0.000 25.000	Y1 -0.600 -0.400	Y2	The diet of kingfishers includes small fish the hunt visually in clear waters (Harrison <i>et al.</i>
Desc Min Min Base	%Base 0.000	Y1 -0.600		The diet of kingfishers includes small fish the hunt visually in clear waters (Harrison <i>et al.</i>
Min	%Base 0.000 25.000	Y1 -0.600 -0.400		The diet of kingfishers includes small fish the hunt visually in clear waters (Harrison <i>et al.</i> 1997), typical found in the channel margin f
Min Min Base	%Base 0.000 25.000 50.000	Y1 -0.600 -0.400 -0.200		The diet of kingfishers includes small fish the hunt visually in clear waters (Harrison <i>et al.</i> 1997), typical found in the channel margin f group. Their abundance increases as more of these fish are present
Min Min Base	%Base 0.000 25.000 50.000 100.000	Y1 -0.600 -0.400 -0.200 0.000		The diet of kingfishers includes small fish the hunt visually in clear waters (Harrison <i>et al.</i> 1997), typical found in the channel margin f

Table 5.43 Kingfishers: Linked indicators, response curves and motivations (Whole Marsh)

5.9 Management

5.9.1 Management indicators

Four management indicators were selected for the DRIFT DSS. These are defined in Table 5.44 along with an indication of the main variables likely to drive change in the indicator.

Table 5.44Management indicators, representative species and their main links to water levels in
the Marsh

Indicator	Driving variables
Access	Access is dictated by dryness/wetness of the wetland and the size of the human population inhabiting the areas around the Marsh.
Fire	Fire is dictated by access.
Cultivation	Cultivation is dictated by access.
Harvesting pressure	Harvesting pressure is dictated by access.

5.9.1.1 Composite indicators for management

None.

5.9.2 Linked indicators, response curves and motivations

The linked indicators, the response curves and the explanations of the shape of the response curves for each of the management indicators are tabulated as follows:

Table 5.45	Access: Linked indicators, response curves and motivations (Southern).
------------	--

Table 5.46Fire: Linked indicators, response curves and motivations (Southern).

Table 5.47Cultivation: Linked indicators, response curves and motivations (Southern).

 Table 5.48
 Harvesting pressure: Linked indicators, response curves and motivations (Southern).

NB: The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations and/or X-axes refer to conditions that are unlikely to occur under any of the scenarios but are needed for completion of the Response Curves. In addition, each response curve has a shape that assumes that all other conditions (indicators) remain at baseline.

The relationships are similar across all areas, although the actual curves may differ slightly from what is shown here. For the exact relationship used for each focus area please refer to the DSS. The focus area used as an example is denoted in the caption.

			nse cui	ve Explanation	
Mean a	annual depth	[D season]			
Desc	m	Y1	Y2		
Min	3.431	2.500		200	
Min Base	4.515	2.000		150 Wetness will affect access, as drier ground	is
	5.056	0.900		easier to traverse. Also, when the levels are	e verv
Median	5.597	0.000		high they can be dangerous to cross.	- 1
	6.267	-1.100		ingli they can be dangelous to closs.	
Max Base	6.938	-2.000			
Max	11.000	-3.000		4 5 6 7 8 9 10 11	
Restric	ted access [D) season]			
Desc	%Base	Y1	Y2	300	
Min	0.000	-5.000		250	
Min Base	25.000	-4.342			_
	50.000	-2.895		There is a straight line relationship betwee	า
Median	100.000	0.000		access and restricted access.	
	150.000	2.100		100 *	
Max Base	200.000	2.700		50	
Max Base Max	200.000 250.000	2.700		0 50 100 150 200 250	
Max		3.100	Y2		her 100% 70% ublin
Max Populat Desc Min Min Base Median Max Base Max	250.000 tion [D seasor %Base 0.000 25.000 50.000 100.000 150.000 200.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807		If the population is doubled, access to Sout will increase but not as much as in some ot more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in	her 100% 70% ublin
Max Populat Desc Min Min Base Max Max Base Max	250.000 tion [D seasor %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807		If the population is doubled, access to South will increase but not as much as in some of more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in access.	her 100% 70% ublin
Max Populat Desc Min Min Base Median Max Base Max Change	250.000 tion [D seasor %Base 0.000 25.000 50.000 100.000 150.000 200.000 250.000 e in flood exte	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 ent [F seaso	on]	If the population is doubled, access to Sout will increase but not as much as in some ot more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in access. 300 Morphological changes to the marsh may access	her 100% 70% ublin tffect
Max Populat Desc Min Min Base Median Max Base Max Change Desc	250.000 tion [D seasor %Base 0.000 25.000 100.000 150.000 200.000 250.000 e in flood exte %Base	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 mt [F seaso Y1	on]	If the population is doubled, access to South will increase but not as much as in some of more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase ir access. 300 300 300 300 300 250	her 100% 70% ublin ffect ame
Max Populat Desc Min Min Base Median Max Base Max Change Desc Min	250.000 tion [D seasor %Base 0.000 25.000 100.000 150.000 200.000 250.000 250.000 e in flood exte %Base 0.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 TI F seaso Y1 -5.000	on]	If the population is doubled, access to South will increase but not as much as in some of more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase ir access. 300 300 300 300 300 250	her 100% 70% ublin ffect ame
Max Populat Desc Min Min Base Median Max Base Max Change Desc Min	250.000 tion [D seasor %Base 0.000 25.000 100.000 150.000 200.000 250.000 e in flood exte %Base 0.000 25.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 MI [F seaso Y1 -5.000 -4.342	on]	If the population is doubled, access to Sout will increase but not as much as in some ot more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in access. Image: style s	her 100% 70% ublin ffect ame en
Max Populat Desc Min Min Base Median Max Base Max Change Desc Min Min Base	250.000 tion [D seasor %Base 0.000 25.000 100.000 150.000 200.000 250.000 e in flood exte %Base 0.000 25.000 50.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 x1 -5.000 -4.342 -2.895	on]	If the population is doubled, access to Sout will increase but not as much as in some ot more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in access. Morphological changes to the marsh may a the extent to which the area floods at the s discharge. There is a 1:1 relationship betwee these sorts of changes and wetness, theref	her 100% 70% ubling ffect ame en
Max Populat Desc Min Min Base Median Max Base Max Change Desc Min Min Base	250.000 tion [D seasor %Base 0.000 25.000 100.000 150.000 200.000 250.000 e in flood exte %Base 0.000 25.000 50.000 100.000	3.100 Y1 -4.053 -3.039 -2.026 0.000 1.787 2.431 2.807 Y1 -5.000 -4.342 -2.895 0.000	on]	If the population is doubled, access to Sout will increase but not as much as in some ot more accessible areas. If Northern is set at access, we have estimated that Southern is access. We have used this to translate immigration to access, i.e., for Southern do of people will result in a +/- 70% increase in access. Image: style s	her 100% 70% ublin ffect ame en

 Table 5.45
 Access: Linked indicators, response curves and motivations (Southern)

Linked i	ndicator ar	nd respo	nse cui	rve	Explanation
Access	[D season]				Fire is directly correlated with access. The
Desc	%Base	Y1	Y2	300	relationship has been set as a straight line with a
Min	0.000	-5.000		250	100% correlation. This means that if access
Min Base	25.000	-4.342		200 8	decreases by +/-100% then fire will decrease by
	50.000	-2.895		200 %	100% The reason 1:1 relationship is that fire is
Median	100.000	0.000		100 *	•
	150.000	2.100			used to clear the marsh to increase accessibility,
Max Base	200.000	2.700		50	and so is one of the first activities engaged in
Max	250.000	3.100		0 50 100 150 200 250	when access increases.

Table 5.46 Fire: Linked indicators, response curves and motivations (Southern)

Table 5.47 Cultivation: Linked indicators, response curves and motivations (Southern)

Linked indicator and response curve					Explanation
Access	[D season]				Cultivation is directly correlated with access. The relationship has been set as a straight line with a 40% correlation. This means that if access
Desc	%Base	Y1	Y2		decreases by +/-50% then cultivation will
Min	0.000	-2.316		150	decrease by 22%. The reason for the +/-40%
Min Base	25.000	-1.737			relationship is that cultivation tends to favour the
	50.000	-1.158		100 8	more accessible parts of the marsh - and so it will
Median	100.000	0.000			•
	150.000	0.800		50	not be affected by reductions on a 1:1 basis.
Max Base	200.000	1.550			Similar reasoning applies to increases in access -
Max	250.000	2.000		0 50 100 150 200 250	which will leave some areas still not favourable to
					cultivation even if they are accessible for other
					activities.

Table 5.48 Harvesting pressure: Linked indicators, response curves and motivations (Southern)

Linked ir	idicator an	id respo	nse cu	rve	Explanation		
Access	[D season]				Harvesting pressure is directly correlated with		
Desc	%Base	Y1	Y2	300	access. The relationship has been set as a straight		
Min	0.000	-5.000		250	line with a 100% correlation. This means that if		
Min Base	25.000	-4.342		200 8	access decreases by +/-100% then fire will		
	50.000	-2.895		150 8			
Median	100.000	0.000		150 100 8	decrease by 100%. The reason 1:1 relationship is		
	150.000	2.100			that hunting/harvesting is one of the first		
Max Base	200.000	2.700		50	activities engaged in when access increases,		
Max	250.000	3.100		0 50 100 150 200 250	possibly even before fire.		

6 Ecological status

The scores and descriptions for different Ecological Status categories are provided in Table 6.1.

 Table 6.1
 Categories for Baseline Ecological Status (after Kleynhans 1996)

Ecological category	Description of the habitat condition
А	Unmodified. Still in a natural condition.
В	Slightly modified. A small change in natural habitats and biota has taken place but the ecosystem functions are essentially unchanged.
С	Moderately modified. Loss and change of natural habitat and biota has occurred, but the basic ecosystem functions are still predominantly unchanged.
D	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.
E	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive.
F	Critically / Extremely modified. The system has been critically modified with an almost complete loss of natural habitat and biota. In the worst instances, basic ecosystem functions have been changed and the changes are irreversible.

6.1 Baseline Ecological Status of the Elephant Marsh (2014)

The Baseline Ecological Status (BES) of the Elephant Marsh as at 2014 is summarised in Table 6.2.

The BES for each discipline is described in the Biodiversity Report (Turpie *et al.* 2016), and summarised in Sections 6.1.1 to 6.1.6.

Table 6.2	BES of the focus are	eas and the who	ole Elep	hant Ma	arsh as	at 2014	. WM =	Whole M	larsh
Dis	cipline		N	W	E	С	S	WM	

Discipline		Ν	W	E	С	S	WM
Vegetation	Site score	E	E	В	В	C	D
Aquatic invertebrates	Site score	С	С	С	В	В	С
Fish	Site score	D	D	C	В	C	С
Herpetofauna	Site score	D	D	В	В	В	С
Mammals	Site score	E	E	E	D	D	E
Birds	Site score	Not	t assesse	d at focu	ıs area le	evel	В
Overall BES	Site score	D	D	С	С	C/D	D

6.1.1 Vegetation

The Elephant Marsh has undergone significant transformation in terms of the extent of cultivation taking place on the floodplains. Hydrologically there have also been some changes with the shifting of the Shire River channel, which have likely led to drying out (and subsequent transformation to agriculture) on the western side of the marsh. Despite these changes, the two most common marsh species, *Phragmites australis* and *Cyperus papyrus*, are extremely resilient to clearing and sprout rapidly and more densely in response to being cut. The biggest changes over the past century would have been in the loss of riparian woody vegetation along the main river banks. It is likely these large woody species would have been removed to allow for agriculture or used for building materials and charcoal production.

The BES of the marsh vegetation was estimated to be a D category, where the system is largely modified from its historical condition and/or associated with a large loss of habitat, biota and basic ecosystem functioning.

6.1.2 Aquatic invertebrates

Based on the low abundance of flow- and habitat-sensitive taxa and the high diversity and abundance of flow- and pollution-tolerant taxa, the BES of the marsh invertebrates was determined to be a C. The condition of the westward-flowing tributaries, however are considered as severely modified, with little resemblance to their original state.

6.1.3 Fish

Overall, the current fish biodiversity is probably significantly modified from pristine conditions due to fishing pressure and major changes in riverine habitat over the past 100 years or more. The loss of seasonal floodplain habitat to cultivation throughout the marsh is likely to have reduced the extent of available breeding and feeding habitat for many species, and therefore their overall abundance in the Elephant Marsh. However, this change has probably not led to the local extinction of any species, at least in recent decades, as considerable seasonal floodplain habitat still exists. Similarly, the extensive loss of tall and dense riparian woodland along the river banks has reduced available habitat for dense vegetation specialists (e.g. some small cyprinids), although these species appear to have persisted in the marsh.

Fishing pressure is reasonably high in some parts of the Elephant Marsh (conversely, some areas are probably fished at low intensity due to difficulty in access) and the abundance of some species may be locally suppressed in these areas. Fishing effort would have to be very high throughout the Elephant Marsh as a whole to have driven any species to local extinction, and therefore this is unlikely to have occurred for any resident species.

The BES of the marsh fish was estimated to be in a C category, where moderate modification of natural habitat and biota has occurred, but the basic ecosystem functions are still unchanged.

6.1.4 Herpetofauna

Prior to human impact the Elephant Marsh would have had more extensive marshy areas, particularly in the surrounding area currently under cultivation. In addition there would have been far more tree cover in the marsh itself and the entire area surrounding the marsh would have comprised tall woodland providing a greater diversity of habitats for reptilian and amphibian fauna. Despite these dramatic habitat changes it is likely that amphibian diversity and populations numbers today still reflect what originally existed in the Marsh. There are on the other hand probably fewer species of arboreal snakes, larger terrestrial reptiles, and specialised aquatic amphibians, and those that remain do so at a lower abundance than would be natural.

The BES of the marsh herpetofauna was estimated to be in a C category, moderately modified from natural due to loss and change of natural habitat and biota but with basic ecosystem functions predominantly unchanged.

6.1.5 Mammals

Most medium and large sized mammals only occur in fenced and protected areas today. There is a low diversity of small mostly generalist mammals that persist in the marsh. The numbers of hippopotamus have declined drastically; high numbers were recorded up to 1990, now there are only a few sightings.

The BES of the marsh mammals was estimated to be an E category, far from the natural / historical, condition and bearing little resemblance to the historical state.

6.1.6 Birds

Under natural conditions, there would have been a greater extent of undisturbed marsh vegetation of all types providing a rich tapestry for bird life. There were also riparian trees along the inflowing tributaries and the Shire River, and the drier areas surrounding the Elephant Marsh would have comprised woodland. In addition, there were fewer people and thus less harvesting of birds for food.

The BES for marsh birds was determined to be 61-89%, i.e. somewhere between "B - largely natural" and "C - significant modifications to biodiversity". A small number of species have either disappeared from the system or are greatly reduced in number.

6.2 Calculations of predicted Ecological Integrity (Condition) of the Elephant Marsh

The process for calculating Ecological Integrity in DRIFT is described in Appendix A.2.2. This section records the weights applied in those calculations.

6.2.1 Discipline and focus area integrities

The weights applied to individual indicator scores when calculating discipline and focus area integrities are given in Table 6.3.

Discipline	Indicator	Discipline	Focus Area		
	Sediment input	0			
	Sediment output	0			
Coordenabeleau	Sediment retention	1			
Geomorphology	Turbidity	1	- 1		
	Channelisation	0]		
	Change in flood extent	1]		
	Rooted aquatics	1			
	Floating exotics	1]		
	Area of cultivated floodplain	0]		
Vegetation	Area of uncultivated floodplain	1	1		
	Area of reeds	1]		
	Area papyrus	1]		
	Area uncultivated channel margin	1]		
In controls we to a	Invertebrate community health	1	1		
Invertebrates	Invertebrate pests	1	- 1		
	Floodplain migrant fish	1			
r :-h	River channel fish	1			
Fish	Demersal fish	1	- 1		
	Channel margin fish	1			
	Crocodiles	1			
Herpetofauna	Small reptiles	1	1		
	Amphibians	1			
Mammala	Hippos	1	- 1		
Mammals	Small mammals	1			
	African skimmer	1			
	Cormorants	1]		
	Wading birds	1			
Birds	Water fowl	1	Not applicable		
	Waders	1			
	Gulls and terns	1			
	Kingfishers	1]		

Table 6.3	Weights applied to individual indicator scores when calculating Discipline and Focus
	Area integrities

6.2.2 Whole Marsh

To calculate the overall predicted FES of the Elephant Marsh as a whole, the integrities for the individual focus area for geomorphology, vegetation, macroinvertebrates, fish, herpetofauna and mammals were weighted in proportion to their area, *viz*.:

- Northern = 81.8 km²
- Western = 208.2 km²
- Eastern = 128.2 km²
- Central = 108.9 km²
- Southern = 56.7 km².

Birds were analysed at the whole marsh level only, and so it was not necessary to compute a whole marsh score.

7 Selection and evaluation of scenarios

The Elephant Marsh assessment comprises consideration of a series of scenarios against a **2014 baseline**, which represents the Marsh under conditions that have prevailed for about the last 10 years or so, but excludes some of the most recent changes brought about by the January 2015 flood. In particular, baseline excludes the influence of the Ruo River, which changed its course during those floods and now discharges directly into Tomoninjobi Lake rather than having a confluence with the Shire River downstream of Chimromo Bridge (which is what is modelled in this assessment).

7.1 Scenario selection process

The Request for Proposals (RFP) called for the assessment of three future management scenarios. These three future management scenarios – business as usual, best practice, and a worst case scenario – could be run with and/or without climate change; and/or with and/or without upstream water-resource developments.

The ToR for the Environmental Flows model and decision support (DRIFT) - Task 5: DRIFT Scenario assessment (Inception Report) required that the DRIFT DSS be run to provide the consequences for the Elephant Marsh ecosystem, for:

- A range of past conditions aimed at identifying ecological tipping points.
- A range of future conditions aimed at testing the resilience of the system.
- Agreed scenarios.

It was not possible to address both of these requirements through the evaluation of only three scenarios, particular since the scenarios needed to comprise a mixture of changes in:

- water volumes and patterns in the Shire River as a result of climate change;
- water volumes and patterns in the Shire River as a result of water resource developments;
- sediment supply (via the Shire and the lateral tributaries feeding the Marsh) as a result of catchment activities;
- human pressures on the Marsh ecosystem (cultivation, fire and harvesting) as a result of population pressure and access.

Thus, after considerable consultation within the study team, it was decided to increase the number of scenarios evaluated to 20. The feeling is that these scenarios go a considerable way towards addressing the requirements to identify ecological tipping points; test the resilience of the system; and evaluate the effects of climate change and proposed water-resource developments in the upstream Shire River.

The 21 scenarios evaluated in this report are given in Section 7.2.

The increase in number notwithstanding; the scenarios evaluated in this report are a small sub-set of the possible permutations. However, with the DRIFT DSS now set up for the Elephant Marshes, there is both scope for and merit in analysis of further water-resource and management options

(particularly restricted access and reduction of landscape erosion through the implementation of coherent catchment management policies) in order to arrive at a solution for the Elephant Marshes that takes account of:

- the high social dependence on the floodplain;
- the impacts of this dependence on the sustainability of the resource;
- the impact of operating rules for upstream water-resource development on the Marsh;
- climate change, and;
- the need to optimise social AND ecological benefits.

7.2 Scenarios evaluated in this report

The 21 scenarios evaluated in this report are listed in Table 7.1. To aid presentation and understanding of the results, the scenarios are divided into three main groups, *viz*.: 'flow only' scenarios (six scenarios); 'sediment only' scenario (one scenario) and 'flow and access' scenarios (14 scenarios; Table 7.1).

#	Scenario code	Description	Restricted access applied
Flow	only		
1	Base2014	Base2014 hydrology Baseline sediment supply set at 100% Baseline population ⁷ supply set at 100% Baseline access supply set at 100%	None
2	Dry Calibration	None	
3	Mid Calibration	Middle range hydrological regime, comprised of 2003-2009 in the baseline record repeated for the 33-year record Baseline sediment supply Baseline population Baseline access	None
4	Wet Calibration	Wet range hydrological regime, comprised of 1976- 1990 in the baseline record repeated for the 33-year record Baseline sediment supply Baseline population Baseline access	None

Table 7.1 Scenarios evaluated in this report

⁷ Human population resident alongside and dependent on the Marsh ecosystem services

#	Scenario code	Description	Restricted access applied		
5	DevCC	Maximum proposed water-resource development in the Shire Basin Modelled climate change Baseline sediment supply Baseline population Baseline access	None		
6	DryDevCC	DevCC changes on the dry range hydrological regime, comprised of 1991-2002, and repeated for the 33- year record Maximum proposed water-resource development in the Shire Basin Modelled climate change Baseline sediment supply Baseline population Baseline access	None		
		Sediment only scenario			
7	B2014_1P_0RA_20S	Base2014 hydrology Baseline sediment supply set at 20% of baseline Baseline population supply set at 100% Baseline access supply set at 100%	None		
		Access and flow			
8	B2014_1P_N100RA_100S		North		
9	B2014_1P_E100RA_100S	Base2014 hydrology Baseline sediment supply	East		
10	B2014_1P_C100RA_100S	Baseline population	Central		
11	B2014_1P_W100RA_100S	100% restricted access to each area separately	West		
12	B2014_1P_S100RA_100S		South		
13	DevCC_1P_N100RA_100S	DevCC hydrology	North		
14	DevCC_1P_E100RA_100S	Baseline sediment supply	East		
15	DevCC_1P_C100RA_100S	Baseline population	Central		
16	DevCC_1P_W100RA_100S	100% restricted access to each area separately	West		
17	DevCC_1P_S100RA_100S		South		
18	B2014_1P_ESCRA_100S	100% restricted access to Central 50% restricted access to East and South	East, South and Central		
19	DevCC_1P_ESCRA_100S	100% restricted access to Central 50% restricted access to East and South	East, South and Central		
20	B2014_2P_0RA_100S	Base2014 hydrology Baseline sediment supply Baseline population Baseline access Double baseline population	None		
21	DevCC_2P_0RA_100S	DevCC hydrology Baseline sediment supply Baseline population Baseline access Double baseline population	None		

7.2.1 Depth time-series for the scenarios

The depth time-series for the Northern Area for scenarios where the inflow from the Shire River varies, i.e., Base2014, DryCalib, MidCalib, WetCalib, DevCC and DryDevCC, are depicted in Figure 7.1 to Figure 7.6, respectively.

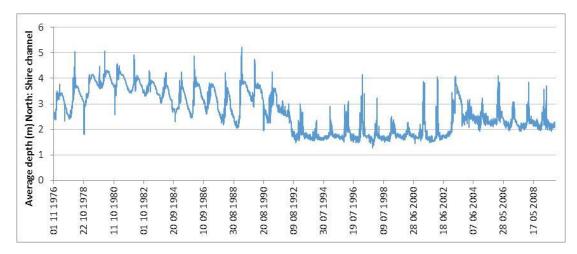


Figure 7.1 Base2014 scenario: Average depth in the channel (Northern focus area), 1976 - 2009

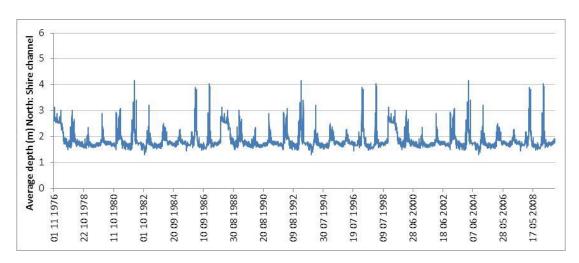


Figure 7.2 DryCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009

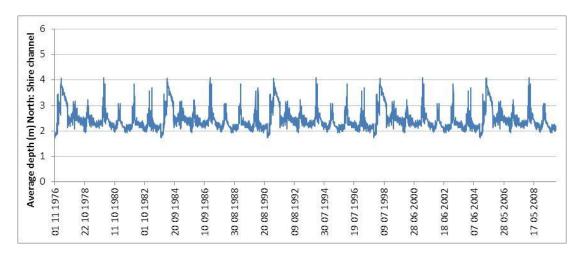


Figure 7.3 MidCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009

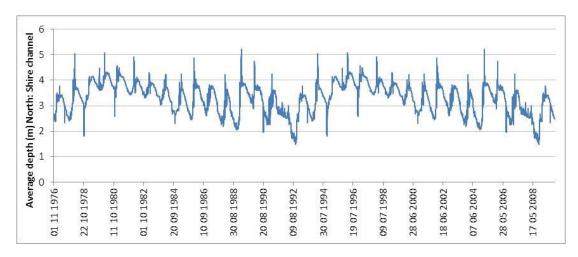


Figure 7.4 WetCalib scenario: Average depth in the channel (Northern focus area), 1976 - 2009

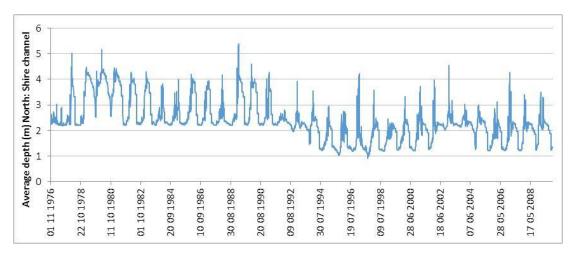


Figure 7.5 DevCC scenario: Average depth in the channel (Northern focus area), 1976 - 2009

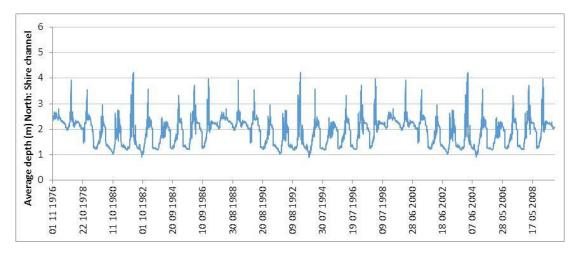


Figure 7.6 DryDevCC scenario: Average depth in the channel (Northern focus area), 1976 - 2009

7.3 Criteria used to define "ecological tipping point"

The ToRs for this exercise require, *inter alia*, the identification of an "ecological tipping point" for the Marsh (see Section 1.1.1). While the concept of an ecological tipping point is useful, the practicalities of identifying 'the tipping point' for an ecosystem such as the Elephant Marshes is considerably more complicated. This is mostly because the historical evidence suggests that the extent and characteristics of the Marsh are defined as much by their elasticity as anything else, and because the changes are on a continuum selecting a single point is difficult.

To overcome some of these difficulties, the vegetation template that defines the Marsh habitat under its baseline condition was used to derive criteria to define a "sustainable" Elephant Marsh. These criteria are based on the proportion of different vegetation types that would be required for the Elephant Marsh to be improved from the BES D category to a C category⁸, and are drawn largely from the ecological status assessments done for vegetation and the apportioning of vegetation types in the different focus areas as outlined in Table 5.8.

For the purposes of this assessment, a "sustainable" Elephant Marsh is defined as an area where:

- Overall ecosystem integrity is judged to be in a C category, or better.
- >8% is comprised of Papyrus and/or Rooted Aquatics (see Table 5.9 for definition).
- >30% is comprised of reeds and grasses.
- <42% is cultivated.

Failure to achieve the criteria for "sustainable" Elephant Marsh was then used to identify "ecological tipping points" in the scenario results.

⁸ Moderately modified. A loss and change of natural habitat and biota has occurred, but the basic ecosystem functions are still predominantly unchanged.

8 Scenario outcomes

Presentation of scenario outcomes for the Elephant Marsh is somewhat complicated by the fact that some indicators, such as the hydraulic and vegetation indicators, show different vulnerabilities to changes in the pattern and volume of water and sediment entering the Marsh for the different focus areas. For instance:

- the Northern and Western Areas are more vulnerable to decreases in water flows than are the other areas, particularly given the human pressures in these areas and that any marsh that dries out sufficiently is converted to crops;
- the Central and Eastern Areas are less vulnerable to decreases in water flows than the Western and Northern Areas (mainly because they are considerably wetter and thus require greater level of change before they are vulnerable to conversion to crops) but fairly vulnerable to removal of channelization.
- the Southern Area is particularly vulnerable to change as a result of an increase in the lateral supply of sediments, e.g., from the Ruo River.

For many of the other indicators, however, it does not make sense to present the results for individual focus areas as these are essentially artificial boundaries drawn to aid interpretation and analysis, and are not representative of natural divisions within the Marsh. It is thus conceivable, or even likely, that individual animals range over more than one focus area; and many may range over the whole marsh, e.g., birds.

For these reasons, the scenario outcomes are presented in several different ways:

- 1. outcomes for hydraulic and vegetation indicators in individual focus areas as a result of changes in Shire River hydrology only (Section 8.1), *viz*.:
 - a. Dry calibration
 - b. Mid Calibration
 - c. Wet calibration
 - d. DevCC.
- 2. outcomes for hydraulic and vegetation indicators in individual focus areas as a result of changes in incoming sediment only (Section 8.2), *viz*.:
 - a. B2014_1P_0RA_20S.
- 3. outcomes for ecosystem indicators, and biodiversity in general, for the Marsh as a whole, which include consideration of changes in Shire River hydrology and incoming sediment flows, but which explore the potential ecological benefits of restricting human access to core focus areas (Section 8.3). To this end variations on restricted access are considered:
 - a. with baseline (B2014) flows:
 - i. B2014_1P_N100RA_100S
 - ii. B2014_1P_E100RA_100S
 - iii. B2014_1P_C100RA_100S
 - iv. B2014_1P_W100RA_100S
 - v. B2014_1P_S100RA_100S
 - vi. B2014_1P_ESCRA_100S

- vii. B2014_2P_0RA_100S
- b. with development and climate (DevCC) change flows:
 - i. DevCC_1P_N100RA_100S
 - ii. DevCC_1P_E100RA_100S
 - iii. DevCC_1P_C100RA_100S
 - iv. DevCC_1P_W100RA_100S
 - v. DevCC_1P_S100RA_100S
 - vi. DevCC_1P_ESCRA_100S
 - vii. DevCC_2P_0RA_100S.

The whole Marsh results were generated using "composite indicators" which merged the results from the focus areas as follows:

- Hydraulics: Areas for relevant indicators in each focus area added or averaged as relevant to obtain Whole Marsh areas. Other indicators, such as onset and duration, are reported for individual focus areas.
- Vegetation: Percentage change was used to calculate area of each vegetation type in each focus area and then added to obtain Whole Marsh area.

Aquatic invertebrates, Fish, Herpetofauna and Mammals: As per weights provided in Appendix Table 4. Birds: Assessed for Whole Marsh only.

8.1 The implications of the flow only scenarios, i.e., changes in Shire River hydrology, on Marsh vegetation

The implications for hydraulics and vegetation of changes in incoming water flows are evaluated through consideration of the following scenarios relative to Baseline (B2014):

- a. Dry calibration (DryCalib)
- b. Mid Calibration (MidCalib)
- c. Wet calibration (WetCalib)
- d. Development and climate change (DevCC)
- e. Dry Development and climate change (DryDevCC).

The basic hydraulics associated with each of the scenarios in each of the focus areas are presented in Table 8.1. These illustrate that the changes in incoming water flows associated with the scenarios affect not only the volume of water, and thus the area of Marsh that is inundated, but also the onset and duration of the seasons. In general, the hydraulic differences between the wet and dry calibration scenarios can be summarised as:

- Total wet season marsh areas in the driest (DryCalib) and wettest (WetCalib) scenarios are 191 and 403 km², respectively.
 - The biggest absolute change in area is for the Western Area, which has a 75 km² increase from DryCalib to WetCalib, followed by Eastern with 47 km².
 - The biggest proportional change in area is for the Northern Area, where DryCalib area is only 14% of WetCalib area, followed by Western Area where DryCalib is 27% of WetCalib.

 \circ DryCalib is ≥ 60%.of WetCalib for Eastern, Central and Southern Areas.

Table 8.1Median values for onset, duration and timing of the seasons in the Marsh and
Seasonal Total Marsh area associated with each of the scenarios in each of the areas

Focus Areas	Base2014	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC
Northern						
Mean annual depth (m)	2.49	1.82	2.39	3.31	2.31	1.78
Dry onset (weeks)	27.00	13.00	13.00	31.00	13.00	8.00
Dry duration (days)	166.00	265.00	244.00	141.00	250.00	296.00
Wet onset (weeks)	5.00	4.00	4.00	6.00	5.00	5.00
Wet duration (days)	151.00	16.00	7.00	183.00	15.00	4.00
Dry: Total marsh area (km ²)	12.33	3.52	9.39	25.28	9.03	3.93
Wet: Total marsh area (km ²)	30.73	5.68	14.67	40.20	19.36	9.03
Western						
Mean annual depth (m)	3.90	2.89	3.78	4.53	3.67	2.85
Dry onset (weeks)	31.00	9.00	8.00	31.00	13.00	7.00
Dry duration (days)	193.00	311.00	303.00	106.00	246.00	317.00
Wet onset (weeks)	4.00	3.00	4.00	4.00	5.00	6.00
Wet duration (days)	145.00	28.00	41.00	212.00	41.00	7.00
Dry: Total marsh area (km ²)	58.90	15.91	55.00	90.25	52.38	20.16
Wet: Total marsh area (km ²)	94.08	27.74	67.43	103.09	76.80	53.14
Eastern						
Mean annual depth (m)	1.80	1.28	1.73	2.21	1.67	1.28
Dry onset (weeks)	31.00	10.00	6.00	31.00	13.00	7.00
Dry duration (days)	167.00	304.00	330.00	101.00	270.00	325.00
Wet onset (weeks)	2.00	3.00	2.00	5.00	5.00	6.00
Wet duration (days)	151.00	29.00	43.00	196.00	63.00	9.00
Dry: Total marsh area (km ²)	91.96	58.66	90.21	110.93	86.14	53.23
Wet: Total marsh area (km ²)	114.59	71.37	97.82	119.21	103.12	87.89
Central						
Mean annual depth (m)	2.00	1.47	1.93	2.50	1.86	1.47
Dry onset (weeks)	31.00	10.00	10.00	31.00	14.00	8.00
Dry duration (days)	161.00	302.00	313.00	109.00	279.00	323.00
Wet onset (weeks)	3.00	2.00	2.00	5.00	6.00	6.00
Wet duration (days)	151.00	16.00	30.00	196.00	41.00	10.00
Dry: Total marsh area (km ²)	70.23	44.98	69.13	84.43	66.92	40.11
Wet: Total marsh area (km ²)	87.62	55.70	75.25	90.65	80.22	69.58
Southern						
Mean annual depth (m)	5.60	4.73	5.48	6.39	5.36	5.44
Dry onset (weeks)	27.00	9.00	7.00	31.00	13.00	11.00
Dry duration (days)	177.00	299.00	310.00	122.00	274.00	272.00
Wet onset (weeks)	4.00	4.00	2.00	5.00	5.00	6.00
Wet duration (days)	151.00	7.0	14.0	217.0	20.0	44.00
Dry: Total marsh area (km ²)	37.58	23.92	34.96	44.75	32.55	34.00
Wet: Total marsh area (km ²)	48.35	30.72	40.11	49.89	44.56	45.75

• The mean duration of the dry season is on average 180 days longer in the driest (DryCalib) scenario relative to the wettest (WetCalib) scenario:


- The Western and Eastern Areas are most affected in this regard, with a 204-day difference in duration.
- \circ $\;$ The Northern Area is the least affected, with a 124-day difference.
- Similar relationships between the areas are evident for wet season duration.

For the development and climate change scenarios, the DevCC scenario, which has the same wet, medium and dry periods as the baseline record (see Section 7.1), the overall changes in the hydraulics are well-within the ranges circumscribed by the calibration scenarios. Even if only the DRY portion of the development and climate change scenario is considered, the expected changes fall inside the bounds of what has happened in the past.

The proportional changes in flooding are entirely consistent with the fact that the Northern and Western Areas are higher, therefore flood shallower, and are thus more vulnerable to changes in flooding depth than the other areas that are lower with deeper flooding.

Changes in the timing of seasons have been shown to have significant implications for a range of lifehistory features of biota in any kind of aquatic ecosystem, such as breeding and survival of young-ofyear. The implications of these changes are explored in more detail in Section 9.

Figure 8.1 gives a broad overview of the impacts on vegetation integrity in the different focus areas as a result of changes in the volume and pattern of water flows into the Marsh.

Figure 8.1 Impacts on overall marsh vegetation condition (integrity) as a result of changes in the volume and pattern of water flows into the Marsh as per the four scenarios⁹

⁹ The scenario scores have been restricted to ≤ 0 . It is however possible that the DSS will return a score >0 because the analyses are based on the assumption that a wetter and bigger Marsh is better.

The following is evident from Figure 8.1:

- The scenarios DryCalib, MidCalib and WetCalib represent the range of historical changes in the Shire River flow regime, and thus the range in vegetation condition that has occurred naturally in the past. For instance, we know that in c. 1915 to 1934 when flows from Lake Malawi ceased (Pike and Rimmington 1965), the Marsh area was smaller than it is now, and cultivation extended considerably further into the Marsh than it does now (Figure 8.2 – see speckled gray particularly in Northern and Western areas)
- The Northern and Western Areas (range = 2 integrity points) are expected to react more strongly to flow changes in the Shire River than the Eastern, Central and Southern Areas (range < 1.5 integrity points). This too is borne out by historical evidence that shows the drier parts of the Marsh (Northern and Western) are more susceptible to conversion to cultivation.
- Reduction in flows as represented by DryCalib and DevCC will result in a decline in the ecological integrity of the vegetation in the Marsh.
- DevCC is expected to result in a decline in vegetation condition relative to baseline but its impact on overall vegetation condition is expected to be less than that which has occurred naturally in the past (e.g., DryCalib). This of course calls into question whether the climate change predictions in DevCC are sufficiently severe, as they represent hydrological changes in the Shire River that are considerably less severe than those known to have happened in the past, and is why the DryDevCC scenario focuses on the dry period in the record.
- Under DryDevCC vegetation condition declines to a similar extent as under DryCalib.
- WetCalib would increase vegetation condition by one category in Northern, and half a category in the other areas.

Greater detail on the changes in different types of vegetation is provided in Table 8.2, which gives the mean change in area relative to baseline for the last ten years of the hydrological record and Table 8.3, which gives area (km²) of vegetation types associated with each of the scenarios also for the last ten years of the hydrological record. These are important because they show the actual changes that underlie the changes in overall condition of the marsh vegetation reported above.

Focusing on the drier of the scenarios, the most notable of these are:

- Substantial loss in rooted aquatics and papyrus, particularly in the Eastern, Central and Southern Areas under DevCC and DryDevCC.
- Concomitant increase in cultivated floodplain, particularly in the Eastern, Central and Southern Areas (increase of 25-30% under Dev CC), which under baseline, are somewhat protected by higher water levels than the heavily-cultivated Northern and Western Areas.

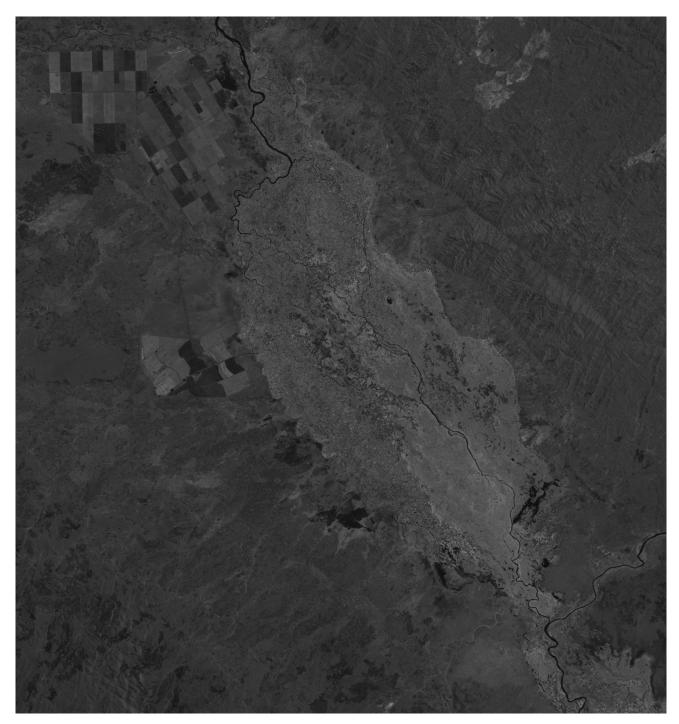


Figure 8.2 A 1999 LandSAT image of the Elephant Marshes, showing greater areas of cultivation than under Baseline 2014.

Vegetation indicator	DryCalib	MidCalib	WetCalib	DevCC	Dry Dev CC
Northern					
Rooted aquatics	-12.3	9.5	33.0	-15.5	-19.5
Floating exotics	3.4	0.9	-8.1	0.9	2.0
Area cultivated floodplain	-17.4	1.0	13.0	5.6	2.7
Area uncultivated floodplain	-9.6	4.5	47.5	3.4	-1.6
Area reeds	-16.1	5.4	70.0	4.7	-3.2
Area papyrus	-14.0	5.2	87.7	3.0	-2.9
Area uncultivated ch margin	-20.7	9.8	52.5	-8.8	-19.2
Western					
Rooted aquatics	-	-	-	-	-
Floating exotics	-	-	-	-	-
Area cultivated floodplain	0.8	0.9	-11.0	6.2	11.8
Area uncultivated floodplain	-16.0	5.5	25.7	-1.2	-4.8
Area reeds	-8.7	4.8	52.2	10.1	1.3
Area papyrus	-9.7	4.5	57.8	5.8	-1.5
Area uncultivated channel	-23.8	11.6	35.1	-10.3	-22.6
margin	-23.8	11.0	55.1	-10.5	-22.0
Eastern					
Rooted aquatics	-14.1	7.3	20.3	-26.3	-33.6
Floating exotics	3.0	-0.9	-2.2	0.0	1.7
Area cultivated floodplain	14.4	-5.1	-29.8	-1.6	3.3
Area uncultivated floodplain	-11.2	4.4	-12.9	-3.4	-4.1
Area reeds	-23.8	11.3	6.3	-1.3	-13.6
Area papyrus	-17.4	7.5	30.6	-1.6	-7.3
Area uncultivated ch margin	-28.3	12.0	42.6	-10.9	-27.1
Central					
Rooted aquatics	-20.0	12.8	27.1	-33.9	-38.5
Floating exotics	2.7	-1.0	-1.5	-0.3	1.1
Area cultivated floodplain	11.6	-4.2	-31.8	-6.2	-0.6
Area uncultivated floodplain	-5.8	2.0	-12.6	-7.5	-10.2
Area reeds	-14.0	6.8	2.6	-5.2	-7.5
Area papyrus	-22.3	10.5	19.7	2.5	-4.2
Area uncultivated ch margin	-21.9	11.5	49.1	-9.4	-21.2
Southern					
Rooted aquatics	-19.7	13.6	25.9	-37.2	-42.2
Floating exotics	2.6	-1.2	-2.4	-0.3	0.9
Area cultivated floodplain	7.3	-4.9	-33.7	-4.5	-1.7
Area uncultivated floodplain	-10.7	4.6	0.2	-8.1	-7.2
Area reeds	-24.6	11.4	13.2	-2.9	-9.2
Area papyrus	-29.8	12.7	31.9	5.1	-5.3
Area uncultivated channel	-16.0	8.3	27.4	-5.5	-14.3
margin	10.0	0.5	27.4	5.5	14.5

Table 8.2Percentage change in area of vegetation types relative to baseline at 100% associatedwith each of the scenarios in the focus areas – using the last 10 years of the record

Table 8.3Area of vegetation types associated with each of the scenarios in the focus areas –
using the last 10 years of the record¹⁰

Vegetation indicator	Base2014	DryCalib	MidCalib	WetCalib	DevCC	Dry Dev CC
Northern						
Rooted aquatics	0.10	0.09	0.11	0.13	0.08	0.08
Floating exotics	n/a	n/a	n/a	n/a	n/a	n/a
Area cultivated floodplain	51.11	42.23	51.64	57.74	53.97	52.47
Area uncultivated floodplain	14.01	12.67	14.64	20.67	14.48	13.79
Area reeds	9.01	7.57	9.50	15.33	9.44	8.72
Area papyrus	0.37	0.32	0.39	0.70	0.38	0.36
Area uncultivated channel margin	n/a	n/a	n/a	n/a	n/a	n/a
Western						
Rooted aquatics	n/a	n/a	n/a	n/a	n/a	n/a
Floating exotics	n/a	n/a	n/a	n/a	n/a	n/a
Area cultivated floodplain	139.85	140.99	141.12	124.44	148.49	156.30
Area uncultivated floodplain	25.54	21.45	26.93	32.11	25.23	24.32
Area reeds	13.79	12.59	14.45	20.98	15.17	13.96
Area papyrus	1.15	1.03	1.20	1.81	1.21	1.13
Area uncultivated channel margin	n/a	n/a	n/a	n/a	n/a	n/a
Eastern						
Rooted aquatics	3.20	2.75	3.43	3.85	2.36	2.12
Floating exotics	n/a	n/a	n/a	n/a	n/a	n/a
Area cultivated floodplain	22.28	25.48	21.14	15.65	21.92	23.01
Area uncultivated floodplain	24.25	21.53	25.32	21.12	23.43	23.26
Area reeds	74.57	56.80	83.00	79.25	73.62	64.47
Area papyrus	14.93	12.33	16.05	19.49	14.69	13.84
Area uncultivated channel margin	n/a	n/a	n/a	n/a	n/a	n/a
Central						
Rooted aquatics	6.54	5.24	7.38	8.32	4.32	4.03
Floating exotics	n/a	n/a	n/a	n/a	n/a	n/a
Area cultivated floodplain	7.07	7.88	6.77	4.82	6.62	7.02
Area uncultivated floodplain	16.57	15.61	16.90	14.47	15.32	14.87
Area reeds	59.78	51.41	63.83	61.34	56.65	55.31
Area papyrus	14.85	11.53	16.41	17.77	15.22	14.22
Area uncultivated channel margin	n/a	n/a	n/a	n/a	n/a	n/a

¹⁰ Area is not available for uncultivated channel margin or floating exotics

Vegetation indicator	Base2014	DryCalib	MidCalib	WetCalib	DevCC	Dry Dev CC
Southern						
Rooted aquatics	10.99	8.83	12.49	13.83	6.90	6.35
Floating exotics	n/a	n/a	n/a	n/a	n/a	n/a
Area cultivated floodplain	15.35	16.48	14.60	10.19	14.66	15.09
Area uncultivated floodplain	6.71	5.99	7.02	6.72	6.17	6.23
Area reeds	9.07	6.84	10.10	10.27	8.81	8.24
Area papyrus	0.88	0.62	0.99	1.16	0.93	0.84
Area uncultivated channel margin	n/a	n/a	n/a	n/a	n/a	n/a

Table 8.4Area (km²) of vegetation types associated with each of the scenarios in the wholeMarsh – using the last 10 years of the record

Vegetation type	Base2014	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC						
	Km ²											
Rooted aquatics	20.83	16.90	23.40	26.13	13.66	12.58						
Area cultivated floodplain	235.65	233.06	235.27	212.83	245.66	253.89						
Area uncultivated floodplain	87.07	77.25	90.80	95.09	84.62	82.46						
Area reeds	166.22	135.20	180.88	187.18	163.70	150.70						
Area papyrus	32.17	25.83	35.04	40.93	32.43	30.38						

8.2 The implications of changes in incoming sediment flows on Marsh geomorphology

Reducing the sediment supply to the Marsh by 80% (B2014_1P_0RA_20S) has very little impact on any of the indicators or on overall condition. This is mostly because major changes to the topography of the Marsh related to a change in sediment supply are likely to take far longer than the 31 years of the record used in this evaluation. For instance, the small changes in channelization in the Northern, Western and Eastern Areas (Table 8.5) would, over much longer periods, result in a significant change to Marsh topography, and hence hydraulics and vegetation.

Table 8.5Predicted change in geomorphology indicators relative to Base2014 under an 80%
reduction in baseline sediment load (average percentages over the last 10 years)

Indicator	B2014_1P_0RA_20S
Northern	
Sediment retention	-0.5
Turbidity	-16.1
Channelisation	-3.7
Change in flood extent	-0.1
Sediment output	0.1
Sediment storage	-3.7
Western	
Sediment retention	-0.1
Turbidity	-1.3
Channelisation	-0.3
Change in flood extent	0.0
Sediment output	0.0
Sediment storage	-0.3
Eastern	
Sediment retention	0.0
Turbidity	-2.8
Channelisation	-0.7
Change in flood extent	0.0
Sediment output	0.0
Sediment storage	-0.7
Central	
Sediment retention	0.0
Turbidity	-0.2
Channelisation	0.0
Change in flood extent	0.0
Sediment output	0.0
Sediment storage	0.0
Southern	
Sediment retention	0.0
Turbidity	-0.1
Channelisation	0.0
Change in flood extent	0.0
Sediment output	0.0
Sediment storage	0.0

8.3 The implications for ecosystem integrity and biodiversity of the Marsh on access restrictions and changes in the human population alongside the Marsh

The predicted overall ecosystem integrity, or condition, for the Elephant Marsh under different access restrictions is depicted in Figure 8.3. By far the most effective measure for improving ecosystem condition, and thus ensure sustainability of the Elephant Marsh is to impose some access restrictions on one or more area of the Marsh. Of the options for access restrictions modelled, the best outcome is achieved for 100% restricted access to Central and 50% restricted access to Eastern and Southern Areas. This option returns an improvement in baseline Marsh conditions even under DevCC hydrology. At the other end of the scale, an increase in the utilisation pressures to double those under baseline will lead to a severe decline in overall Marsh condition (B2014_2P_0RA_100S) and DEVCC_2P_0RA_100S).

As discussed briefly in Section A.2.1, there is automatic and fixed level of uncertainty to the DRIFT predictions¹¹, particularly where these predictions concern a condition that is far removed from the baseline. This reflects uncertainty around the response of the indicators to the flow regime under discussion, to the proposed protection measures and inherent difficulties in predicting the future in dynamic systems. The "Min" and "Max" levels shown on Figure 8.3 represent the 90% confidence range is calculated using Hozo $S^{2} = \frac{1}{12} \left(\frac{(a-2m+b)^{2}}{4} + (b-a)^{2} \right)$ *et al.*'s (2005) estimation of sample variance.

The area (km^2) of vegetation types associated with each of the flow and access scenarios in the whole Marsh are shown in Table 8.6.

The scenario that returns the best ecological condition for the marsh is B2014_1P_ESCRA_100S, which comprises:

- Base2014 hydrology
- Baseline sediment supply
- Baseline population
- 100% restricted access to Central
- 50% restricted access to East and South.

The scenario that returns the least favourable ecological outcome is highlighted in red (DevCC_2P_0RA_100S), which comprises:

- DevCC hydrology
- Baseline sediment supply
- Baseline population
- o Baseline access
- Double baseline population.

¹¹ There is an option in DRIFT for specialists to increase this uncertainty but this was not used /needed in this assessment.

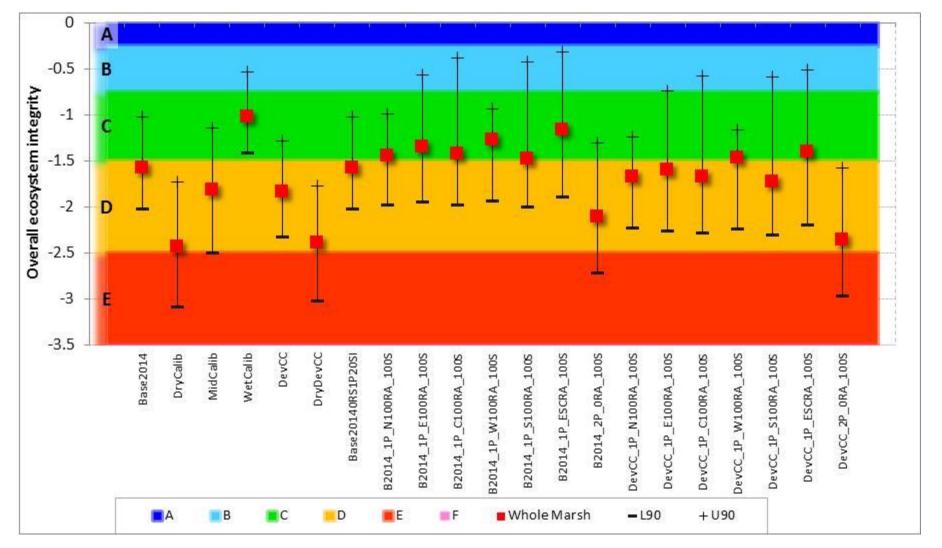


Figure 8.3 Overall ecosystem integrity for the Elephant Marsh under different access restrictions

Vegetation type		Base2014		B2014_1P_N100RA_100S		B2014_1P_E100RA_100S		B2014_1P_C100RA_100S		B2014_1P_W100RA_100S		B2014_1P_\$100RA_100\$		B2014_1P_ESCRA_100S		B2014_2P_0RA_100S		DevCC_1P_N100RA_100S		DevCC_1P_E100RA_100S		DevCC_1P_C100RA_100S				DevCC_1P_S100RA_100S		DevCC_1P_ESCRA_100S		DevCC_2P_0RA_100S
Overall Marsh Category	[)	C	C/D	C,	/D	C,	/D		C	C	C/D		С	l	D		D		D		D	C/	D	[)	C,	/D	E,	F/F
Open water	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%	20	4%
Rooted aquatics	21	4%	21	4%	21	4%	22	4%	21	4%	23	4%	24	4%	17	3%	14	3%	14	3%	15	3%	14	3%	16	3%	18	3%	10	2%
Area cultivated floodplain	236	44%	221	41%	233	43%	234	43%	197	36%	232	43%	230	42%	255	47%	232	43%	243	45%	245	45%	206	38%	241	44%	240	44%	265	49%
Area uncultivated floodplain	87	16%	93	17%	92	17%	91	17%	99	18%	90	17%	96	18%	77	14%	91	17%	90	17%	88	16%	96	18%	88	16%	94	17%	74	14%
Area reeds	166	31%	171	32%	186	34%	182	34%	174	32%	170	31%	199	37%	127	23%	169	31%	185	34%	181	33%	172	32%	168	31%	199	37%	125	23%
Area papyrus	32	6%	32	6%	36	7%	36	7%	33	6%	33	6%	40	7%	25	5%	33	6%	37	7%	37	7%	33	6%	33	6%	40	7%	25	5%
Total area	562				558				588				585				524				548				609				521	

Table 8.6 Area (km²) of vegetation types and percentage of Marsh area, associated with each of the flow and access scenarios in the whole Marsh – using the last 10 years of the record

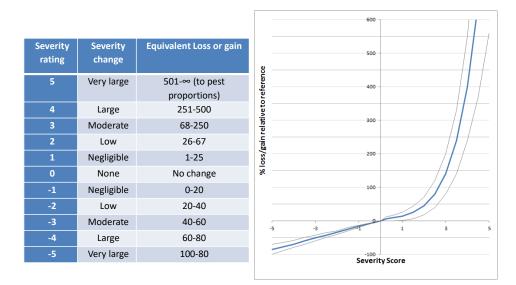


Figure 8.4 Uncertainty margins around severity scores used in DRIFT

Importantly, the following options all meet the criteria for a "sustainable" Elephant Marsh as defined in Section 7.3:

- B2014_1P_W100RA_100S
- B2014_1P_ESCRA_100S

Six other scenarios return an improvement on the baseline status and come close to meeting the criteria for a "sustainable" Marsh:

- B2014_1P_N100RA_100S
- B2014_1P_E100RA_100S
- B2014_1P_C100RA_100S
- B2014_1P_S100RA_100S
- DevCC_1P_W100RA_100S
- DevCC_1P_ESCRA_100S

Of these eight scenarios, those that completely restrict access to the Eastern or Central areas are deemed to be more feasible than those that restrict access to the Northern, Western and/or Southern areas. This is because the latter three (particularly the North and West) are the most used by the surrounding population, and so 100% restricted access would be both difficult to implement and prejudicial to a large number of people.

The two scenarios that offer the best outcome for the Marsh, and by inference for the long term support of the people that depend on its resources, are those that completely restrict access to the core of the Marsh (Central) and limit access to the Eastern and Southern areas, viz. B2014_1P_ESCRA_100S and DevCC_1P_ESCRA_100S (Figure 8.5 and Table 8.7).

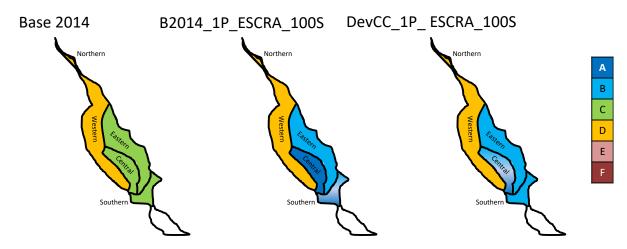


Figure 8.5 Overall integrity for the focus areas under Base2014, B2014_1P_ESCRA_100S and DevCC_1P_ESCRA_100S.

The predicted changes relative to baseline for all the indicators at all the focus areas and for all the scenarios are given in Appendix B.

Focus area	Base2014	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
N	D	D	с	D	D	D	D	D	E	с	D/E	D/E	D/E	D/E	D/E	E
w	D	D	D	D	D	С	D	D	E	D/E	D/E	D/E	C/D	D/E	D/E	E
w	с	с	с	A/B	с	С	с	В	D	C/D	В	C/D	C/D	C/D	В	D
с	с	с	с	с	А	С	С	А	с	с	с	A/B	с	с	A/B	С
s	с	с	с	с	с	С	A	A/B	D	с	с	с	с	A/B	в	D
ALL	D	D	C/D	C/D	C/D	С	C/D	с	D	D	D	D	C/D	D	C/D	D/E

 Table 8.7
 Overall integrity for the focus areas under the scenarios

8.4 Scenario-based implications for environmental services

The Elephant Marsh environmental services are being considered under a separate sub-study (Substudy 3), which has the following objectives:

- Describe and quantify the ecosystem services provided by the Elephant Marshes.
- Draw comparisons with other wetlands in Africa of a similar nature.
- Determine the how capacity of the system to deliver these services responds to hydromorphology.
- Determine the wetland's sensitivity and adaptive capacity to multiple pressures.
- Develop and analyse up to three different future management scenarios.

As input to Sub-study 3, the DRIFT analysis was asked to provide the response of the following to the scenarios analysed in this report:

- Total area of each of the different vegetation types (Table 8.8).
- Marsh-wide estimates for important fisheries groups (demersal, floodplain migrants and river channel fish).
- Marsh-wide estimates for invertebrate pests, small mammals, hippos, crocodiles, and reptiles.
- Marsh-wide estimates for waterfowl and also for skimmers
- Marsh-wide estimate of sediment retention.

Some of these are among those already presented and some required compilation of additional composite indicators. For ease of reference, all are provided here (Table 8.9).

Vegetation type	Base2014	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Open water	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Rooted aquatics	21	21	21	22	21	23	24	17	14	14	15	14	16	18	10
Area cultivated floodplain	236	221	233	234	197	232	230	255	232	243	245	206	241	240	265
Area uncultivated floodplain	87	93	92	91	99	90	96	77	91	90	88	96	88	94	74
Area reeds	166	171	186	182	174	170	199	127	169	185	181	172	168	199	125
Area papyrus	32	32	36	36	33	33	40	25	33	37	37	33	33	40	25

Table 8.8	Scenario results for total area (km ²) of each of the different vegetation types
-----------	--

Table 8.9Scenario results as a percentage relative to baseline for sediment retention, and for biomass important fisheries groups; invertebrate pests,
small mammals, hippos, crocodiles, reptiles; waterfowl and African skimmers

	Base2014	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
C: Sediment storage (WM)	0.0	-1.9	0.7	1.1	-0.1	-1.8	0.0	0.1	0.1	0.1	0.4	0.1	0.2	-0.4	0.0	0.0	-0.1	0.3	-0.1	0.1	-0.5
C2: Rooted aquatics(WM)	0.0	-18.1	12.0	25.0	-34.3	-38.9	0.0	0.4	2.8	5.7	0.0	11.8	16.4	-18.9	-33.8	-31.1	-27.9	-34.3	-20.9	-16.0	-52.4
C2: Floating exotics	0.0	2.5	-1.0	-2.0	0.1	1.3	0.0	0.0	-0.5	-1.1	0.0	-3.5	-3.8	3.5	0.0	-0.5	-1.1	0.1	-3.5	-3.7	3.6
C2: Area cultivated floodplain(WM)	0.0	-2.2	0.4	-8.3	4.6	8.0	0.0	-6.5	-0.4	-0.4	-17.8	-1.9	-2.1	8.0	-2.0	4.1	4.1	-13.3	2.6	2.5	12.7
C2: Area uncultivated floodplain(WM)	0.0	-8.3	3.3	1.7	-4.5	-6.1	0.0	4.8	4.0	9.9	8.8	3.1	14.8	-10.9	0.3	-0.3	6.4	4.4	-1.4	11.2	-15.5
C2: Area reeds(WM)	0.0	-17.2	8.2	12.3	-1.1	-8.0	0.0	2.9	12.0	9.4	4.6	2.2	19.7	-23.2	1.8	11.9	9.2	3.6	1.2	19.8	-24.5
C2: Area papyrus(WM)	0.0	-18.4	8.8	26.7	1.1	-4.3	0.0	0.7	12.6	12.3	1.9	1.2	22.5	-21.8	1.8	14.5	14.5	3.0	2.3	25.1	-20.9
C2: Area uncultivated ch margin(WM)	0.0	-22.2	10.4	42.7	-8.9	-20.8	0.0	7.5	7.0	1.4	1.4	4.2	6.9	-8.3	-1.3	-1.4	-7.4	-7.3	-4.6	-1.5	-17.4
C: Invertebrate pests	0.0	-4.3	1.6	2.7	-1.2	-2.0	0.0	3.1	2.9	1.2	3.8	1.6	4.4	-4.7	2.0	1.9	0.1	2.7	0.5	3.3	-5.9
C: Biomass important fisheries fishes	0.0	-10.3	5.4	33.0	-6.4	-11.9	0.0	8.0	9.5	9.0	14.4	7.0	23.2	-32.6	1.9	3.5	2.9	8.6	0.9	17.2	-38.2
C2: Crocodiles(WM)	0.0	-16.6	0.4	25.2	-4.9	-15.5	0.0	7.6	8.6	7.1	18.2	4.1	15.8	-22.9	3.2	4.1	2.5	14.6	-0.7	11.2	-27.6
C2: Small reptiles(WM)	0.0	-6.0	2.5	10.8	-2.2	-3.7	0.0	5.0	7.5	6.5	21.0	4.0	13.2	-22.2	2.8	5.5	4.7	19.3	2.0	11.3	-24.7
C2: Amphibians	0.0	-10.5	5.4	20.7	-3.9	-8.7	0.0	2.9	2.7	4.2	7.5	0.7	6.6	-9.7	-0.8	-0.9	0.5	3.8	-3.0	3.1	-13.5
African skimmer	0.0	-23.4	0.8	56.4	-5.8	-20.9	0.0	5.8	7.6	7.3	6.8	7.8	21.5	-24.1	0.3	2.0	1.9	1.4	2.4	16.7	-29.8
Water fowl	0.0	-19.0	4.7	39.2	-7.1	-17.6	0.0	12.6	24.1	15.2	15.6	8.7	35.8	-51.3	7.0	17.7	9.6	10.3	-0.2	36.1	-69.6
C2: Hippos(WM)	0.0	49.7	7.3	28.4	38.2	48.9	27.0	26.0	38.4	-0.3	14.0	-4.7	12.2	13.2	22.4	3.2	14.0	17.2	20.9	13.3	17.7
C2: Small mammals(WM)	0.0	11.5	2.5	5.2	12.7	14.2	6.1	7.4	13.7	-16.8	2.4	-5.5	6.6	1.2	0.8	-1.8	2.4	4.9	2.9	0.3	2.9

9 Conclusions and potential implications for management

EFlows are arguably the most important way of ensuring the sustainability of freshwater ecosystems in the face of much needed development of those self-same resources, but there is no single magical flow amount (other than the natural flow regime) that maintains a healthy river or wetland. Rather, as soon as flow manipulations begin the ecosystem starts to change, and it then becomes a question of how much change is acceptable in return for the development benefits sought (King and Brown In press).

EFlows scenarios help to answer that question by describing different possible futures, which can be used in negotiations and discussion. The scenarios should be designed so that the three streams of information - ecological integrity, economic wealth, and social equity - are represented equally, not all subsumed into an economic bottom line.

This study was neither required to make, nor has it made, any recommendations as to the EFlows required to 'maintain' the Elephant Marsh. There are numerous reasons why this is so:

- as stated in Section 2.4, and demonstrated through the analysis of the flow scenarios, the Marsh has experienced many changes in the hydrological regime supporting it; many of these outside of what it is currently experiencing; and there is no one single "flow" that can be supplied that has in the past, or will in future, 'maintain' the Marsh, viz.: change is the only constant;
- the final allocation of water for ecosystem maintenance and thus of ecosystem condition should not be technically pre-determined but rather be a societal choice involving considered trade-offs between resource protection and development;
- the concept of sustainable ecosystem use recognizes that society as a whole should be involved in discussions on the trade-off point between development and resource protection, with government(s) making the final decision, as this facilitates buy-in regarding decisions and a will to help make them work;
- assessments, such as the one done here for the Elephant Marshes, that consider a range of
 possible scenarios provide the information needed for and support discussion and
 negotiation between all the stakeholders through examination of trade-offs;
- the scenario assessments should help stakeholders¹² and decision-makers identify what might constitute acceptable and unacceptable futures for the Elephant Marsh, and may well lead to a request for additional scenarios that further explore a sub-set of favoured options (King and Brown In press);
- the 2-d hydrodynamic model and the DRIFT DSS established as part of this project are available for use in generating and assessing such additional scenarios, should it be required.

The conclusions from the 33-year horizon analyses of the potential effects of alternative future scenarios of flow and/or management on the ecological condition of the Elephant Marsh, using a pre-2015 morphological template, are as follows:

¹² Stakeholders of rivers may be defined as any group with an interest in the way the river is developed and managed.

- The Marsh is fairly resilient to short-term flow and sediment changes, having endured significant fluctuations in both in its history.
- Development and climate change in the short term as assessed in this report do not represent a significant threat to the long-term integrity and sustainability of the Elephant Marshes, but may represent a threat in the longer term if overlain on dry periods such as those known to have occurred in the past.
- The most immediate and significant threat to the integrity and sustainability of the Elephant Marshes is pressure from subsistence users, including clearing of marsh areas for cultivation and over-harvesting a wide range of resources.

Restricting access to some parts of the Marsh, in particular the core in the Eastern, Central and Southern Areas will markedly improve the overall condition of the Marsh, increase many of its resources and improve its resilience to Climate Change.

Of the access restrictions accessed, the greatest benefit is achieved with 100% restricted access to Central and 50% restricted access to Eastern and Southern Areas.

It is worth noting, however, that these conclusions are for analyses based on a 33-year hydrological record and a *c*. 2013/2014 hydromorphological template, which changed significantly in Jan 2015. The hydromorphology sub-study (Birkhead *et al.* 2016) highlights that while it may be true that the Marsh is fairly resilient to short-term changes in average climatic conditions, it is susceptible to longer term climatic cycles and sudden and catastrophic changes in channel planform geometry resulting from excessive sediment loads combined with flooding. These are not included in the analyses in this report. The long-term future of the Marsh is very much tied to long-term natural climate (Malawi lake-level) variations and possibly climate change, since flows in the Shire River are extremely sensitive to changes in rainfall and/or evaporation (Birkhead *et al.* 2016). Analyses in Birkhead *et al.* (2016) suggest that there have been frequent and prolonged periods of zero flow from Lake Malawi into the Shire River in the past, including at least one per century as far back as the 18th century. Also, the morphological changes resulting from the January 2015 flood were extensive, and are discussed in some detail in Birkhead *et al.* (2016). Possibly the most significant of these are:

- reduced inundation of the Southern and Central areas as a result of the diversion of majority of the flow in Shire River through the recent breach in the railway embankment instead of passing under Chiromo Bridge;
- infilling of Lake Tomaninjobi as result of the rerouting of the sediment-laden Ruo River into the Southern area.

While these, and other long-term trends, fall outside of the current set of analyses, it is possible to include them in future assessments using the DSS established in this project.

10 References

- Arthur, R., Halls, A., Birkhead, D., Reinecke, K., Forsythe, K. 2015. Climate resilient livelihoods and sustainable natural resources management in the Elephant Marshes, Malawi. Inception Report. Ministry of Water Development and Irrigation. Report No. P117617.
- Avenant, N.L. 2011. The potential utility of rodents and other small mammals as indicators of ecosystem integrity of South African grasslands. *Wildlife Research* 38: 626-639.
- Avenant, N.L., Du Plessis J. & Senoge J. 2014. Mammals of the Mohale Dam catchment. Specialist report for Contract 1273: Biological Resources Monitoring within Phase 1 of the LHWP Catchments 2013-14. Report no. AEC/14/12 submitted by Anchor Environmental Consultants to the Lesotho Highlands Development Authority.
- Berner, L. 1955. Mosquitoes of the Shire River System, Nyasaland. *Annals of the Entomological Society of America*, 48(4): 214-218.
- Birkhead, M. E. 1978. Some aspects of the feeding ecology of the reed cormorant and darter on lake Kariba, Rhodesia. *The Ostrich* 49(1): 1-7.
- Birkhead, A.L., Reinecke, M.K. and Brown, C.A. 2016. Climate resilient livelihoods and sustainable natural resources management in the Elephant Marshes, Malawi: Hydromorphology. Ministry of Irrigation and Water Development. Shire River Basin Management Program Project 117617.
- Bowen, S.H. 1979. A nutritional constraint in detritivory by fishes: the stunted population of Sarotherodon mossambicus in Lake Sibaya, South Africa. Ecological monographs 49(1): 17–31.
- Brown, C.A. and Joubert, A. 2003. Using multicriteria analysis to develop environmental flow scenarios for rivers targeted for water resource development. *Water SA* 29(4):365-374.
- Brown C.A., Joubert, A.R., Pemberton, C.W., Greyling, A.J. and King, J.M. 2008. DRIFT USER MANUAL
 V2.0: Biophysical Module for predicting overall river condition in small to medium sized
 rivers with relatively predictable flow regimes (incorporating updates to the DRIFT database).
 Report to the Water Research Commission.
- Brown, C.A., Joubert, A.R., Beuster, H., Greyling, A., King, J.M. 2013. DRIFT: DSS software development for Integrated Flow Assessments. Final Report to the Water Research Commission. WRC project No.: K5/1873. 176 pp.
- Brown, C., Zakaria, V., Joubert, A., Rafique, M, Murad, J., King, J., Hughes, J., Cardinale, P., Alonzo, L.
 2017 (in press). Achieving an environmentally-sustainable outcome for the Gulpur Hydropower Project in the Poonch River Mahaseer National Park, Pakistan. *Journal of Environmental Management*.
- Bruton, M.N., 1979. The breeding biology and early development of *Clarias gariepinus* (Pisces: Clariidae) in Lake Sibaya, South Africa, with a review of breeding in species of the subgenus *Clarias* (*Clarias*). *The Transactions of the Zoological Society of London* 35(1): 1–45.
- Bruton, M.N., Jackson, P.B.N. 1983. Fish and Fisheries of Wetlands. *Journal of the Limnological Society of Southern Africa* 9(2): 123–133.
- Chansa, W., Senzota, R., Chabwela, H., Nyirenda, V. 2011. The influence of grass biomass production on hippopotamus population density distribution along the Luangwa River in Zambia. *Journal of Ecology and the Natural Environment* 3(5): 186-194.

- Chimatiro, S.K. 2004. The biophysical dynamics of the Lower Shire River floodplain fisheries in Malawi. PhD thesis. Rhodes University, Grahamstown, South Africa.
- Coppinger, M.P., Williams, G.D., Maclean, G.L. 1988. Distribution and breeding biology of the African Skimmer on the upper and middle Zambezi river. *Ostrich* 59(3): 85-96.
- Denny, P. 1985. The ecology and management of African wetland vegetation. Dr W Junk Publishers, Dordrecht, Netherlands.
- De Preez, L., Curruthers, V. 2009. A complete guide to Frogs of Southern Africa. Struik Nature, Cape Town, South Africa. 488 pp.
- Ellery, W.N., McCarthy, T.S., Smith, N.D. 2003. Vegetation, hydrology and sedimentation patterns Ion the major distributary system of the Okavango fan, Botwswana. *Wetlands* 23(2): 357-375.
- Ellery, W.N., Ellery, K., Rogers, K.H., McCarthy, T.S. 1995. The role of *Cyperus papyrus* in channel blockage and abandonment in the north-eastern Okavango Delta, Botswana. *African Journal of Ecology* 33: 25-49.
- Ellery, W.N., McCarthy, T.S., Dangerfield, J.M. 2000. Floristic diversity in the Okavango delta, Botswana as an endogenous product of biological activity. In: Biodiversity in wetlands; assessment, function and conservation, Volume 1. Gopal, B., Junk, W.J., Davis, J.A. (Eds). Backhuys Publishers, Leiden, the Netherlands. 226 pp.
- Fergusson, R.A. 2010. Nile crocodile, Crocodylus niloticus. In: Crocodiles. Status Survey and Conservation Action Plan. Third Edition. Manolis, S.C., Stevenson, C. (Eds.). Crocodile Specialist Group: Darwin.
- Field, C.R. 1970. A study of the feeding habits of the hippopotamus in Queen Elizabeth National Park Uganda, with some management implications. *Zoologica Africana* 5: 71-86.
- Fraser, L.H., Keddy, P.A. 2005. The world's largest wetlands. Ecology and conservation. Cambridge University Press, Cambridge, UK.
- Gaudet, J.J. 1992. Structure of African floodplains. *Journal of the East Africa natural history society and national museum* 82(199): 1-32.
- Hann, B. J. 1995. Invertebrate associations with submerged aquatic plants in a Prarie wetland. UFS (Delta Marsh) Annual Report 30: 78-84.
- Harrison, J.A., Allen, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V., Brown, C.J. (Eds). 1997. The atlas of southern African birds. BirdLife South Africa, Johannesburg.
- Hazelton, E.L.G., Mozder, T.J., Burdick, D.M., Kettenring, K.M., Whigham, D.F. 2016. *Phragmites* australis management in the United States: 40 years of methods and outcomes. *AoB PLANTS* 6: plu001; doi:10.1093/aobpla/plu001.
- Hozo, S.P., Djulbegovic, B., Hozo, I. 2005. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol*. 5:13.
- Jackson, P.B.N., 1961. The impact of predation, especially by the tiger fish *Hydrocyon vittatus* on African freshwater fishes. In: Proceedings of the Zoological Society of London. Wiley Online Library, pp. 603–622. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.1961.tb05895.x/full [Accessed August 18, 2016].
- Kalokekamo, F. 2000. Crocodile and Hippopotamus management in the Lower Shire, Compass unpublished report. 29pp.
- Keddy, P.A. 2005. Wetland ecology. Principles and conservation. Cambridge University Press, Cambridge, UK.

- King, J.M., Brown, C.A. and Sabet, H. 2003. A scenario-based holistic approach to environmental flow assessments for regulated rivers. *Rivers Research and Applications* 19 (5-6). Pg 619-640.
- King, J.M., Brown, C.A. 2009. Integrated Flow Assessments: concepts and method development in Africa and South-east Asia. *Freshwater Biology* 55(1): 127-146.
- Kleynhans, C.J. 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River (Limpopo system, South Africa). *Journal of Aquatic Ecosystem Health* 5: 41-54.
- Kosamu, I.B.M., de Groot, W.T., Kambewa, P.S., de Snoo, G. 2012. Institutions and ecosystem-based development potentials of the Elephant Marsh, Malawi. *Sustainability* 4: 3326-3345.
- Kosamu, I.B.M. 2014. Conditions for sustainability of the Elephant Marsh fishery in Malawi. *Sustainability* 6: 4010-4027.
- Madej, M.A., Ozaki, V. 2009. Persistence of effects of high sediment loading in a salmon bearing river, northern California. In: *Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts* (Special Paper 451: 34-55). James, L.A., Rathburn, S.A., Whittecar, G.R. (Eds.). Geological Society of America, Boulder Colorado. doi:10/1130/2008.2451(03).
- Masifwa, F.W., Twongo, T., Denny, P. 2001. The impact of water hyacinth, *Eichhornia crassipes* (Mart) Solms on the abundance and diversity of aquatic macroinvertebrates along the shores of northern Lake Victoria, Uganda. *Hydrobiologia*, 452: 79-88.
- Mawell, W.A. 1954. The Shire Valley Project. The Nyasaland Journal 7(2): 39-45.
- McCarthy, TS. 1992. Physical and biological processes controlling the Okavango Delta a review of recent research. *Botswana Notes and Records* 24: 57-86.
- McCarthy, T.S., Ellery, W.N., Rogers, K.H., Cairncross, B., Ellery, K. 1986. The roles of sedimentation and plant growth in changing flow patterns in the Okavango Delta, Botswana. *Suid-Afrikaanse Tydskrif vir Wetenskap* 82:579-585.
- McCarthy, T.S., Ellery, W.N., Bloem, A. 1998. Some observations on the geomorphological impact of hippopotamus (*Hippopotomus amphibious* L.) in the Okavango Delta, Botswana. *African Journal of Ecology* 36: 44–56.
- McCarthy, T.S., Ellery, W.N. 1998. The Okavango Delta. *Transactions of the Royal Society of South Africa* 53(2): 157-182.
- McCarthy, T.S., Ellery, W.N., Stanistreet, I.G. 1993. Lakes of the north eastern region of the Okavango swamps, Botswana. *Zeitschrift fur Geomorphologie* 37(3): 273-294.
- Mosepele, K., Moyle, P.B., Merron, G.S., Purkey, D.R., Mosepele, B. 2009. Fish, Floods, and Ecosystem Engineers: Aquatic Conservation in the Okavango Delta, Botswana. *BioScience* 59(1): 53–64. ISSN 0006-3568, electronic ISSN 1525-3244.
- Navarro, L.A. and Phiri, G. 2000. Water hyacinth in Africa and the Middle East: A survey of problems and solutions, IDRC. Available at: https://books.google.co.uk/books?hl=en&lr=&id=hhXqXNQ0WSQC&oi=fnd&pg=PA7&dq =hyacinth+fish+effects+zambezi&ots=CW8Za90J_r&sig=--AgAv4T0oOwdxivZ7tOGRgmt-Y [Accessed August 18, 2016].
- Obot, E.A. 1986. Ecological comparison of the pre- and post-impoundment macrophyte flora of the River Niger and Lake Kainjii, Nigeria. *Vegetatio* 68(2): 67-70.
- Pagter, M., Bragato, C., Brix, H. 2005. Tolerance and physiological responses of *Phragmites australis* to water deficit. *Aquatic Botany* 81: 285-299.

- Petr, T. 2000. Interactions between fish and aquatic macrophytes in inland waters. *FAO fisheries technical paper No. 396.* Food and Agricultural Organisation, Rome.
- Phiri, P.M., Day, R.K., Chimatro, S., Hill, M.P., Cock, M.J.W., Hill, M.G., Nyando, E. 2001. Progress with biological control of water hyacinth in Malawi. Biological and integrated control of water hyacinth, *Eichhornia crassipes*, ACIAR proceedings 102. Julien, M.H., Hill, M.P., Center, T.D., Jianqing, D. (Eds.).
- Pienaar, U., van Wyk, P., Fairall, N. 1966. An experimental cropping scheme of hippopotami in Letaba River of the Kruger National Park. *Koedoe* 9: 1-33.
- Pike, J.G. and Rimmington, G.T. 1965. A pre-colonial history of Malawi. Nyasaland Journal. Vol 18.
- Reinecke, M.K. 2013. Links between lateral riparian vegetation zones and flow. PhD thesis, University of Stellenbosch, Stellenbosch, South Africa.
- Richards, E.V. 1954. The Shire Valley project. They Nyasaland Journal 7(1): 7-17.
- Rogers, K.H. 1995: Riparian wetlands. In: Wetlands of South Africa. Cowan, G.I. (Ed). South African Wetlands Conservation Programme Series, Pretoria: Department of Environmental Affairs and Tourism, Pretoria, South Africa: 41-52.
- Skelton, P.H., 2001. A complete guide to the freshwater fishes of southern Africa, Struik.
- Steyn, G.J. Gagiano, C.L., Deacon, A.R., du Preez, H.H. 1996. Notes on the induced reproduction and development of the tigerfish, *Hydrocynus vittatus* (Characidae), embryos and larvae. *Environmental Biology of Fishes* 47(4): 387–398.
- Sutcliffe, J.V. 1974. A hydrological study of the southern Sudd region of the upper Nile. *Hydrological Sciences Bulletin* 19(2): 237-255.
- Terry, P.J. 1995. The water hyacinth problem in Malawi and forseen methods of control. Strategies for water hyacinth control. Report of a panel of experts meeting, 11-14 September, 1995, Fort Lauderdale, Florida, USA. Charudattan, R., Labrada, R., Center, T.D, Kelly-Begazo, C. (Eds). Food and Agricultural Organisation of the United Nations, Rome.
- Theophile, D.O., Sibiri, S., Issa, O., Wendengoudi, G. 2012. Feeding Habits of *Hippopotamus amphibius* and Carrying Capacity in the Biosphere Reserve of "Mare aux Hippopotames" in the South-Sudanian Zone of Burkina Faso. *Pakistan Journal of Zoology* 44(2):433-442.
- Thorstad, E.B., Hay, C.J., Naesje, T.F., Changa, B., Okland, F. 2002. Movement and habitat utilisation of tigerfish (*Hydrocynus vittatus*) in the Upper Zambezi River: implications for fisheries management. NINA Project Report 19. Norwegian Institute for Nature Research, Trondheim, Norway. 28pp.
- Tulbure, M.G., Johnston, C.A. 2010. Environmental conditions promoting non-native *Phragmites australis* expansion in the Great Lakes coastal wetlands. *Wetlands* 30: 577-587.
- Turpie, J.K., Forsythe, K., Reinecke, M.K., Diedericks, G., Dijkdtra, K.D., Collins, S., Branch, W., Davies, T., Allan, D., Avenant, N. 2016. Climate resilient livelihoods and sustainable natural resources management in the Elephant Marshes, Malawi: Biodiversity of the Elephant marshes (Substudy 4). Ministry of Irrigation and Water Development. Shire River Basin Management Program Project 117617. 221 pp.
- Wallace, K. M., Leslie, A. J. 2008. Diet of the Nile Crocodile in the Okavango Delta, Botswana. *Journal* of Herpetology 42(2): 361-368.

- Welcomme, R., 1985. River fisheries. Food and Agricultural Organisation, Fisheries Department, Rome, Italy. Available at: http://www.fao.org/docrep/003/t0537e/t0537e00.htm [Accessed April 18, 2016].
- Welcomme, R.L., Winemiller, K.O., Cowx, I.G. 2006. Fish environmental guilds as a tool for assessment of ecological condition of rivers. *River Research and Applications* 22(3): 377–396.
- Weyl, O.L.F., Hecht, T. 1998. The biology of *Tilapia rendalli* and *Oreochromis mossambicus* (Pisces: Cichlidae) in a subtropical lake in Mozambique. *South African Journal of Zoology* 33(3): 178–188.
- Whigham, D.F., Dykyjova, D., Hejny, S. 1993. Wetlands of the world I: inventory, ecology and management. Handbook of vegetation science. 15-2. Springer, Netherlands. 768 pp.
- Willoughby, N.G., Tweddle, D. 1978. The ecology of the catfish *Clarias gariepinus* and *Clarias ngamensis* in the Shire Valley, Malawi. *Journal of Zoology* 186(4): 507–534.

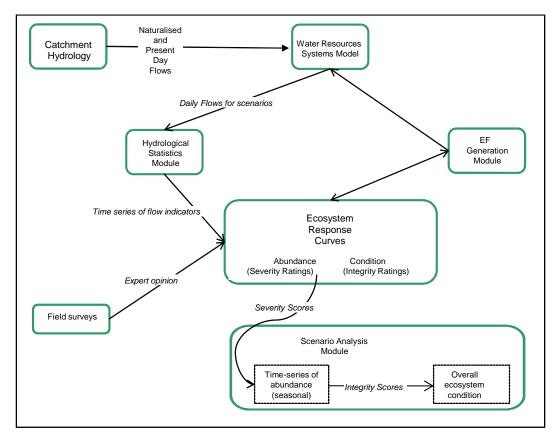
Appendix A. OVERVIEW OF DRIFT

This appendix is a generic overview of DRIFT and as such may use examples from areas other than the Elephant Marsh. The Elephant Marsh assessment was completed using Drift2_v2.95.exe.

DRIFT is a process and data-management DSS, allowing data and knowledge to be used to their best advantage in a structured way. Within DRIFT, discipline specialists, use their own discipline-specific methods to derive the links between river flow and river condition. The central rationale of DRIFT is that different aspects of the flow or sediment regime of a river elicit different responses from the riverine ecosystem. Thus, removal of part or all of a particular element of the flow or sediment regime will affect the riverine ecosystem differently than will removal of some other element.

In DRIFT, the long-term daily-flow time-series is partitioned into parts of the flow regime that are thought to play different roles in sculpting and maintaining the river ecosystem, such as the onset of important flow seasons, which may affect breeding cycles, or the magnitude of the annual flood, which may inundate a floodplain. This makes it easier for ecologists to predict how changes in the flow regime could affect the ecosystem. The 'parts' of the flow regime used in DRIFT are called flow indicators. The indicators used for the Elephant Marsh are presented in Section 4.1.

The variability of the flow regime in timing and magnitude, both in its natural state and in any future scenario, is captured automatically through algorithms within the hydrological module of the DSS that identify the nature of the flow indicators year-by-year. Thus, the 33 annual values of each flow indicator are provided for the 33 years of flow record. This means the specialists can consider a response to a condition for a particular time-step rather than thinking of an averaged response over several years. They can also use data from a particular year or season to calibrate time-series responses.


The study process was structured as follows:

- 1. The study focused on five focus areas in the Elephant Marsh (Figure 2.3).
- 2. The flow changes were converted to water depths across the marsh via a hydromorphologial model (Birkhead *et al.* 2016) that were evaluated in terms of:
 - i. Changes in magnitude.
 - ii. Changes in duration.
 - iii. Changes in timing (e.g., delayed onset of wet season).
- 3. Specialists provided opinion on the consequences of these changes in the form of Response Curves. The disciplines represented were:
 - i. Hydraulics
 - ii. Geomorphology
 - iii. Vegetation
 - iv. Aquatic invertebrates
 - v. Fish

- vi. Herpetofauna
- vii. Mammals
- viii. Birds
- 4. Each specialist provided a list of ecosystem attributes that they believe could change with flow change. These are called ecosystem indicators.
- 5. The database was used to evaluate
 - i. changes in sediments and vegetation for each focus area and scenario;
 - ii. changes in aquatic invertebrates, fish, herpetofauna and birds for the Whole Marsh for each scenario, and;
 - iii. changes in the overall condition of the Whole Marsh for each scenario.
- 6. The outputs of the DRIFT database are written up in Section 8.

The basic sequence of activities in the DRIFT DSS can be summarised as follows (Appendix Figure 1):

- 1. Collect data for the study at the river.
- 2. Augment with expert knowledge for similar river systems and a global understanding of river functioning.
- 3. Model current catchment hydrology and scenarios of future changes.
- 4. Calculate annual flow indicator time-series for all scenarios.
- 5. Construct relationships for the expected response of individual ecosystem indicators to changes in aspects of the flow regime (Response Curves). The Response Curves show the extent of change (i.e. severity of change on a scale of 0 (no change) to 5 (very high change)) from baseline to that what would be expected from an ecosystem indicator in response to specific changes in flow.
- 6. Use Response Curves to predict time-series of abundance changes in each ecosystem indicator as a response to flow and consequent other changes.
- 7. Calculate Integrity for each indicator by assigning a direction of change, i.e., whether an increase in abundance will be expected to move the indicator away from the natural ecosystem condition or the opposite, and from this calculate discipline and site level Integrity.

Appendix Figure 1 Flow chart of DRIFT process

A.1. RESPONSE CURVES¹³

Response Curves depict the relationship between a biophysical indicator and a driving variable (e.g., flow). In this EFlows assessment, Response Curves linked an indicator to any other indicator deemed to be driving change. The aim is not try to capture every conceivable link, but rather to restrict the linkages to those that are most meaningful and can be used to predict the bulk of the likely responses to a change in the flow or sediment regimes of the river.

A Response Curve for the relationship between relative fish (e.g., Alwan Snow Trout) abundance (given as a severity rating – see Section A.2 for an explanation of the scoring system used) and a flow category, in this case, onset of the wet season, is shown in Appendix Figure 2. In this figure, an early or late start to the wet season would lead to decreased abundance.

¹³ The bulk of this section is taken from Joubert *et al.*, 2009.

Desc	cal week	Y
Min	4.00	-0.500
MinPD	11.00	0.250
	12.50	0.000
Median	14.00	0.000
	16.00	0.000
Max PD	18.00	-0.500
Max	24.00	-2.000

Appendix Figure 2 Example of a Response Curve – in this case of the relationship between the calendar week when the wet season begins and the abundance of Alwan Snow Trout.

The units on the x-axis depend on the driving variable under consideration. For instance, in the case of wet season onset (Appendix Figure 2), these are weeks of the year.

The y-axis may refer to abundance as in Appendix Figure 2, but also to other measures such as concentration or area, depending on the indicator. Response curves are constructed using severity ratings (Section A.2).

The number of Response Curves constructed for an EFlows assessment depends on the level of detail at which a flow assessment is done. In the NJHEP assessment, for example, the specialists collectively completed 57 Response Curves for Site 2. These were used to evaluate scenarios by taking the value of the flow indicator for any one scenario and reading off the resultant values for the biophysical indicators from their respective Response Curves. Once this had been done the database combined these values to predict the overall change in each biophysical indicator and in the overall ecosystem under each scenario.

A.1.1. Construction of the Response Curves

The Response Curves used in this project were constructed at a workshop held in Cape Town from the $15^{th} - 19^{th}$ August 2016. The Response Curves and explanations for their shape are contained in the DRIFT DSS, and in Section 5.

A.1.2. Response Curves and cumulative change

The time-series approach means that the Response Curves are used to predict the likely seasonal change in an ecosystem indicator in response to the flow/sediment conditions experienced in that, or possibly preceding, seasons. For instance, the kind of questions and discussion typically addressed to facilitate setting the dry season discharge Response Curve for Alwan Snow Trout are:

- "If the dry season discharge declines from baseline values, what will be the consequences for the abundance of Alwan Snow Trout?"
 - \circ $\,$ Do Alwan Snow Trout use the main river in the dry season?

- Do Alwan Snow Trout abundances change noticeably over the climatic range covered in the baseline, i.e., are they noticeably more abundant in wet years than in dry years, or vice versa?
- What kinds of habitat do adult Alwan Snow Trout use in the main river?
- Do Alwan Snow Trout breed in the dry season?
- Do they breed in the main river or in the tributaries?
- Where do Alwan Snow Trout lay their eggs?
- What sorts of habitat do fry, fingerlings and juvenile trout use in the main river?
- At what discharge(s) does the favoured habitat(s) disappear?
- What is the consequence of these habitats not being available for one season?
- If discharge reaches zero for one season, are there pools that the trout will be able to survive in?
- Can the Alwan Snow Trout survive for a dry season in pools?
- Is water temperature a concern, i.e., would the river freezing be an issue for Alwan Snow Trout if discharge decreased?
- What do Alwan Snow Trout adults/juveniles/fingerlings/fry eat?
- How will the food base be affected by changes in dry season low flows?
- o Etc.

Often, a species such as Alwan Snow Trout will be expected to survive even an extremely-dry dry season, with possibly only minor changes (5-10%) in overall abundance, resulting in a Response Curve similar to that shown in Appendix Figure 3, which predicts a 20-40% seasonal decline in trout abundance if dry season flows drop to zero, even though the lowest 5-day minimum ever recorded at the Line of Control under baseline is 11.78 m³/s. If, however, the flows drop to this level in the dry season year after year, then the cumulative effect on trout populations is likely to be far greater. The time-series enable the DSS to capture this cumulative effect.

Desc	m	Y
in	0.00	-1.000
MinPD	1.45	-0.500
	9.87	0.000
Median	18.29	0.000
	24.52	0.000
Max PD	30.76	0.200
Max	32.30	0.200

Appendix Figure 3 Response curve for Alwan Snow Trout response to changes in minimum 5day dry season discharge.

A.2. SCORING SYSTEM

Into the foreseeable future, predictions of river change will be based on limited knowledge. Most river scientists, particularly when using sparse data, are thus reluctant to quantify predictions: it is

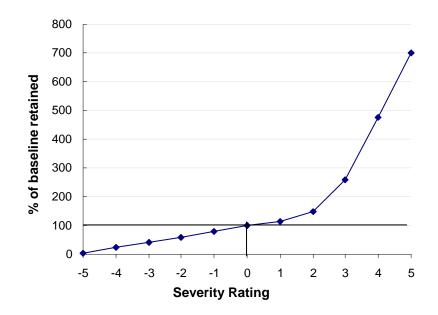
relatively easy to predict the nature and direction of ecosystem change, but more difficult to predict its timing and intensity. To calculate the implications of loss of resources to subsistence and other users in order to facilitate discussion and trade-offs, it is nevertheless necessary to quantify these predictions as accurately as possible.

To aid this, two types of information are generated for each biophysical indicator, viz.:

- Severity ratings, which describe increase/decreases for an indicator in response to changes in the flow indicators, and;
- Integrity ratings, which indicate whether the predicted change is a move towards or away from the natural ecosystem condition, i.e., how the change influences overall ecosystem condition.

The severity ratings are used to construct the Response Curves. The Integrity ratings are used to predict changes in overall ecosystem condition/health.

A.2.1. Severity ratings


The severity ratings are on a continuous scale from -5 (large reduction) to +5 (very large change; Brown *et al.*, 2008; Appendix Table 1), where the + or – denotes an increase or decrease in abundance or extent. These ratings are converted to percentages using the relationships provided in Appendix Table 1. The scale accommodates uncertainty, as each rating encompasses a range of percentages; however, greater uncertainty can also be expressed through providing a range of severity ratings (i.e. a range of ranges) for any one predicted change (after King *et al.* 2003).

Appendix Table 1 DRIFT severity ratings and their associated abundances and losses – a negative score means a loss in abundance relative to baseline, a positive means a gain.

Severity rating	Severity	% abundance change
5	Critically severe	501% gain to ∞ up to pest proportions
4	Severe	251-500% gain
3	Moderate	68-250% gain
2	Low	26-67% gain
1	Negligible	1-25% gain
0	None	no change
-1	Negligible	80-100% retained
-2	Low	60-79% retained
-3	Moderate	40-59% retained
-4	Severe	20-39% retained
-5	Critically severe	0-19% retained includes local extinction

Note that the percentages applied to severity ratings associated with gains in abundance are strongly non-linear¹⁴ and that negative and positive percentage changes are not symmetrical (Appendix Figure 4; King *et al.* 2003).

For each year of the hydrological record, and for each ecosystem indicator, the severity rating corresponding to the value of a driving indicator is read off its Response Curve and converted to a percentage change. The severity ratings for each driving indicator are then combined to produce an overall change in abundance for each season, which combined provide an indication of how abundance, area or concentration of an indicator is expected to change under the given flow conditions over time, relative to the changes that would have been expected under baseline conditions in the catchment.

Appendix Figure 4 The relationship between severity ratings and percentage abundance lost or retained as used in DRIFT and adopted for the DSS. (Baseline is always = 100%).

A.2.2. Integrity ratings

Integrity ratings are on a scale from 0 to -5.

The integrity ratings are calculated by assigning a positive or negative sign to changes in abundance depending on whether an increase in abundance is a move towards natural or away. The integrity ratings for each indicator are then combined to provide a discipline level Integrity score. Discipline level integrity scores are in turn combined to provide an overall site level Integrity Score, which is used to place a flow scenario within a classification of overall river condition, using the South African

¹⁴ The non-linearity is necessary because the scores have to be able to show that a critically-severe loss equates to local extinction whilst a critically severe gain equates to proliferation to pest proportions.

Eco-classification categories A to F (Appendix Table 2; Kleynhans 1996; Kleynhans 1999; Brown and Joubert 2003).

The ecological condition of a river is defined as its ability to support and maintain a balanced, integrated composition of physico-chemical and habitat characteristics, as well as biotic components on a temporal and spatial scale that are comparable to the natural characteristics of ecosystems of the region. As an example, if the baseline ecological status (BES) of a river is a B-category, and there is a decrease in a fish species, which is a move away from natural, this will cause the integrity score to be more negative, representing movement in the direction of categories C to F.

Appendix Table 2	Definitions	of	the	Baseline	Ecological	State	(BES)	categories	(after
Kleynhans	; 1996).								

Ecological category	Corresponding DRIFT Overall Integrity Score	Description of the habitat condition
А	>-0.25	Unmodified. Still in a natural condition.
В	>-0.75	Slightly modified. A small change in natural habitats and biota has taken place but the ecosystem functions are essentially unchanged.
с	>-1.5	Moderately modified. Loss and change of natural habitat and biota has occurred, but the basic ecosystem functions are still predominantly unchanged.
D	>-2.5	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.
E	>-3.5	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive.
F	<-3.5	Critically / Extremely modified. The system has been critically modified with an almost complete loss of natural habitat and biota. In the worst instances, basic ecosystem functions have are completely altered and the changes are irreversible.

Overall Integrity Scores are calculated for the ecosystem as a whole, i.e., the combined effect of changes in the indicators at each site. The results can be plotted as overall Integrity Score (y-axis) vs. percentage or volume of MAR (x-axis) or, where there are relatively few points, as a plot of Integrity Scores per site, which allows for easy comparison between sites. The categories represent points along a continuum, thus the 'divisions' between the categories are only guides as to the general position at which the ecological condition might be expected to shift from one category to the next. Furthermore, the rules for the integrity categories were developed on rivers outside of Malawi, and have not been tested on the Elephant Marsh. They provide an indication of the relative categories associated with each scenario and should not be misconstrued as an absolute prediction of future condition.

A.3. IDENTIFICATION OF ECOLOGICALLY-RELEVANT ELEMENTS OF THE FLOW REGIME

One of the main assumptions underlying the DRIFT EFlows process is that it is possible to identify ecologically-relevant elements of the flow regime and isolate them within the historical hydrological record. Thus, one of the first steps in the DRIFT process is to identify these ecologically-important

flow indicators. To do this, the historical flow record at provided for the Shire River was used (see Birkhead *et al*. 2016 for details).

The hydrological record for the Shire River suggests that this is a flood-pulse system, with welldefined ecological seasons. The seasonal divisions chosen for the assessment were:

- Dry season
- Transitional season 1
- Flood season
- Transitional season 2.

The rules for defining the seasons are provided in Appendix Table 3. Due to the moving nature of the seasons, start and end dates are defined for every year of the hydrological time-series.

Appendix Table 3 Rules for defining the end of the four ecological seasons

Season	How the end of the season was defined
Dry Season/Transition 1	Crossing of 2 x minimum dry season discharge
Transition 1/ Flood Season	Up crossing of 1 .1 mean annual discharge
Flood Season/ Transition 2	Down crossing of 1.1 mean annual discharge
Transition 2/Dry Season	Recession rate < 0.07 m ³ /s per day

A.4. MAJOR ASSUMPTIONS AND LIMITATIONS OF DRIFT

Predicting the effect of flow changes on rivers is difficult because the actual trajectory and magnitude of the change is additionally dependent on so many other variables, such as climate, sediment supply and human use of the system. Thus, several assumptions underlie the predictions. Should any of these assumptions prove to be invalid, the actual changes may not match the predicted changes. This does not necessarily make the predictions themselves incorrect or invalid, but simply means that the surrounding set of circumstances that support the predictions has changed.

The following important major assumptions apply:

- The baseline hydrology closely approximates the actual flow conditions in the river over the period of record.
- Different parts of the flow regime sustain the river ecosystem in different ways. Changing one part of the flow regime will change the river in a different way than will changing another part.
- It is possible to identify ecologically-relevant elements of the flow regime and isolate them within the historical hydrological record (see Section A.3)
- 2014 conditions were used as a Baseline for predicting change, and change was expressed as a percentage move towards or away from the BES.
- Predicted changes in ecological status are relative to the BES (2014).

• Predictions are based on a 33-year horizon.

The main limitation is the paucity of data. This is a universal problem, as ecosystems are complex and we will probably never have complete certainty of their present and possible future characteristics. Instead it is essential to push ahead cautiously and aid decision-making, using best available information. The alternative is that water resource development decisions are made without consideration of the consequences for the supporting ecosystems, eventually probably making management of sustainability impossible. Data paucity is addressed in the DRIFT process by accessing every kind of knowledge available - general scientific understanding, international scientific literature, local wisdom and specific data from the river under consideration or from similar ones – and capturing these in a structured process that is transparent, with the DSS inputs and outputs checked and approved at every step. The Response Curves used (and the reasoning used to construct them) are available for scrutiny within the DSS and they, as well as the DRIFT DSS, can be updated as new information becomes available.

A second aspect of the paucity of data is that it is neither known what the river was like in its pristine condition nor exactly how abundant each ecosystem aspect (sand bars, fish, etc.) was then or is now. To address this, all DRIFT predictions are made relative to the baseline situation (there will be a little more, or a lot less, than today, and so on).

These inherent uncertainties also mean that the trends and relative position of the scenarios are more reliable predictors of the impacts of the scenarios than are their absolute values. Also, DRIFT is designed to predict overall condition, and focusing on one indicator to the exclusion of others is not recommended.

A.5. REFERENCES

- Beilfuss, R. and Brown, C. 2010. Assessing environmental flow requirements and trade-offs for the Lower Zambezi River and Delta, Mozambique. *International Journal of River Basin Management*, Volume 8. Issue 2: 127 – 138.
- Biggs, B.J.F. and Thomsen, H.A. 1995. Disturbance of stream periphyton by pertubations in shear stress: Time to structural failure and differences in community resistance. *Journal of Phycology*, 31:233-241.
- Birkhead, A.L., Reinecke, M.K. and Brown, C.A., 2016. Hydromorphology of the Elephant Marsh, Malawi. Unpublished consultancy report prepared by Streamflow Solution cc and Southern Waters Ecological Research and Consulting cc, in association with MRag (UK). Climate resilient livelihoods and sustainable natural resources management in the Elephant Marsh, Malawi. Ministry of Irrigation and Water Development, Republic of Malawi. Shire River Basin Management Programme Project 117617. 201 pp.
- Brown, C.A. 2007. Mzingwane Environmental Flows Process: DRIFT Output. Unpublished Report to IUCN-ROSA. 30 pp.
- Brown, C.A., Joubert, A.R., Pemberton, C.W., Greyling, A.J., and King, J.M. 2008. DRIFT USER MANUAL V2.0: Biophysical Module for predicting overall river condition 1n small to medium-sized

rivers with relatively predictable flow regimes (incorporating updates to the DRIFT database). Report to the Water Research Commission.

- Brown, C.A. and Joubert, A. 2003. Using multicriteria analysis to develop environmental flow scenarios for rivers targeted for water resource development. *Water SA* 29(4): 365-374.
- Brown, C.A., Joubert, A.R., Beuster, J. Greyling, A. and King, J.M. 2013. DRIFT: DSS software development for Integrated Flow Assessments. FINAL REPORT to the South African Water Research Commission. February 2013.
- Brown, C.A. Pemberton, C., Birkhead, A., Bok, A., Boucher, C., Dollar, E., Harding, W., Kamish, w., King, j., Paxton, b. and Ractliffe, s. 2006. In Support of Water-resources planning – highlighting key management issues using DRIFT: A Case study. *Water SA* Vol. 32 No. 2. Pg 181-191.
- Dollar, E.S.J, Brown, C.A., Turpie, J.K., Joubert, A.R., Nicolson, C.R. and Manyaka, S. 2006. The development of the Water Resource Classification System (WRCS). Volume 1. Overview and seven-step classification procedure. CSIR Report No., Department of Water Affairs and Forestry, Pretoria. 70pp.
- Dollar, E.S.J, Nicolson, C.R., Brown, C.A., Turpie, J.K., Joubert, A.R, Turton, A.R., Grobler, D.F. and Manyaka, S.M. 2010. The development of the South African Water Resource Classification System (WRCS): a tool towards the sustainable, equitable and efficient use of water resources in a developing country. *Water Policy* 12: 479–499.
- Joubert, A.R., Brown, C.A. and king, J.M. 2009. Startup DSS software development for integrated flow management. Progress Report: Water Research Commission Project K8/848. 21 pp.
- King, J.M., Brown, C.A. and Sabet, H. 2003. A scenario-based holistic approach to environmental flow assessments for regulated rivers. *Rivers Research and Applications* 19 (5-6). Pg 619-640.
- King, J.M. and Brown, C.A. 2009. Environment protection and sustainable management of the Okavango River Basin: Preliminary Environmental Flows Assessment. Scenario Report: Ecological and social predictions. Project No. UNTS/RAF/010/GEF. Report No. 07/2009. Four Volumes.
- Kleynhans, C.J. 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River. *Journal of Aquatic Ecosystem Health* 5: 41 54.
- Kleynhans, C.J. 1999. A procedure for the determination of the ecological reserve for the purposes of the national water balance model for South African Rivers. Institute for Water Quality Studies. Department of Water Affairs and Forestry, Pretoria, South Africa.
- PBWO/IUCN 2008. Final Scenario Report: Report 4: Pangani River Basin Flow Assessment, Moshi, 23pp.
- Southern Waters. December 2010. Environmental Flow Assessment. Volume 1: Main Report. ESIA for the Baynes Hydropower Project on the Cunene River on the border between Angola and Namibia. Unpublished project report for ERM, and NamPower.

Appendix B. WEIGHTS USED FOR WHOLE MARSH RESULTS

	Aquatic inve	rtebrate		Fish	1			Mammals		
Site	Community health	Pests	Floodplain River migrant fish channel fish		Demersal fish	Channel margin fish	Crocodiles	Small reptiles	Amphibians	Hippos
Northern	81.8	81.8	1	1	1	0.8	81.8	81.8	81.8	81.8
Western	208.2	208.2	1	1	1	0.9	208.2	208.2	208.2	208.2
Eastern	128.2	128.2	0.9	1	0.9	1	128.2	128.2	128.2	128.2
Central	108.9	108.9	0.9	1	1	1	108.9	108.9	108.9	108.9
Southern	56.7	56.7	1	1	0.9	1	56.7	56.7	56.7	56.7

Appendix Table 4	Weights used for combining focus area results into Whole Marsh results
	weights used for combining rocus area results into whole marsh results

Appendix C. SCENARIO RESULTS: MEAN PERCENTAGE CHANGE

Appendix Table 5 The mean percentage changes in abundance (relative to 2014 Baseline) as predicted for the Northern Area. Blue and green are major changes that represent a move towards natural: green = 40-70%; blue = >70%. Orange and red are major changes that represent a move away from natural: orange = 40-70%; red = >70%.

								1												
	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Macroinvertebrates													-							
Invertebrate community health	-17.4	-1.3	32.9	-8.7	-15.8	1.0	35.7	0.0	0.0	0.0	0.0	0.0	-10.7	30.5	-8.7	-8.7	-8.7	-8.7	-8.7	-19.1
Invertebrate pests	-3.8	1.6	17.2	1.1	-0.7	0.0	16.7	0.0	0.0	0.0	0.0	0.0	-4.0	18.0	1.1	1.1	1.1	1.1	1.1	-2.8
Fish																				
Floodplain migrant fish	-5.2	0.8	27.7	-2.3	-4.9	0.0	39.0	0.0	0.0	0.0	0.0	0.0	-22.3	37.5	-2.3	-2.3	-2.3	-2.3	-2.3	-23.7
River channel fish	-9.4	2.1	41.1	-4.3	-9.2	0.1	47.3	0.0	0.0	0.0	0.0	0.0	-55.8	44.9	-4.3	-4.3	-4.3	-4.3	-4.3	-59.3
Demersal fish	-17.6	13.3	56.8	-14.2	-24.5	0.0	65.1	0.0	0.0	0.0	0.0	0.0	-84.9	53.6	-14.2	-14.2	-14.2	-14.2	-14.2	-97.6
Channel margin fish	-15.5	7.1	38.7	-6.7	-14.4	0.0	38.1	0.0	0.0	0.0	0.0	0.0	-47.4	33.3	-6.7	-6.7	-6.7	-6.7	-6.7	-53.3
Herpetofaunca				·			·		·	·	·			·						
Crocodiles	-21.1	-1.2	34.5	-7.7	-21.2	0.0	39.3	0.0	0.0	0.0	0.0	0.0	-25.5	35.0	-7.7	-7.7	-7.7	-7.7	-7.7	-32.7
Small reptiles	-4.8	2.2	21.5	0.2	-1.9	0.0	35.9	0.0	0.0	0.0	0.0	0.0	-21.6	36.5	0.2	0.2	0.2	0.2	0.2	-21.5
Amphibians	-10.0	4.8	20.6	-4.0	-9.0	0.0	11.6	0.0	0.0	0.0	0.0	0.0	-5.7	9.3	-4.0	-4.0	-4.0	-4.0	-4.0	-9.8
Mammals																				
Hippos	62.3	5.0	32.6	32.6	32.6	24.2	24.2	24.2	8.3	13.2	-3.8	25.3	12.1	23.1	1.3	13.2	13.2	13.2	12.1	12.1
Small mammals	61.9	10.0	15.5	15.5	15.5	14.9	14.9	14.9	-47.6	11.4	-5.5	57.6	7.6	35.8	3.4	11.4	11.4	11.4	7.6	7.6

Appendix Table 6 The mean percentage changes in abundance (relative to 2014 Baseline) predicted for the Western Area. Blue and green are major changes that represent a move towards natural: green = 30-70%; blue = >70%. Orange and red are major changes that represent a move away from natural: orange = 30-70%; red = >70%.

	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Macroinvertebrates																				
Invertebrate community health	-17.6	0.4	19.2	1.1	-9.3	0.1	0.2	0.0	0.0	10.5	0.0	0.0	-7.2	1.3	1.1	1.1	11.4	1.1	1.1	-5.3
Invertebrate pests	-6.6	2.0	9.5	-0.8	-2.1	0.0	0.0	0.0	0.0	17.1	0.0	0.0	-5.3	-0.8	-0.8	-0.8	16.7	-0.8	-0.8	-6.0
Fish																				
Floodplain migrant fish	-7.2	1.1	25.6	-3.8	-6.7	0.0	0.0	0.0	0.0	39.6	0.0	0.0	-22.1	-3.8	-3.8	-3.8	37.3	-3.8	-3.8	-24.6
River channel fish	-10.6	3.9	38.6	-5.8	-10.3	0.0	0.0	0.0	0.0	48.4	0.0	0.0	<mark>-53.8</mark>	-5.7	-5.8	-5.8	45.5	-5.8	-5.8	-58.5
Demersal fish	-17.2	13.9	59.7	-13.5	-24.5	0.0	0.0	0.0	0.0	65.6	0.0	0.0	-80.9	-13.5	-13.5	-13.5	55.7	-13.5	-13.5	-93.0
Channel margin fish	-15.9	8.3	37.5	-7.5	-15.3	0.0	0.0	0.0	0.0	38.0	0.0	0.0	-46.1	-7.5	-7.5	-7.5	32.9	-7.5	-7.5	-52.9
Herpetofaunca																				
Crocodiles	-18.8	-3.0	31.1	-4.0	-16.8	0.0	0.0	0.0	0.0	52.1	0.0	0.0	-32.2	-4.0	-4.0	-4.0	51.3	-4.0	-4.0	<mark>-35.3</mark>
Small reptiles	-8.0	2.9	16.7	-1.9	-3.7	0.0	0.0	0.0	0.0	59.1	0.0	0.0	-34.4	-1.9	-1.9	-1.9	58.8	-1.9	-1.9	-36.9
Amphibians	-6.6	3.5	27.1	2.4	-2.6	0.0	0.0	0.0	0.0	23.6	0.0	0.0	-9.1	2.4	2.4	2.4	26.8	2.4	2.4	-6.5
Mammals																				
Hippos	78.3	13.6	43.3	43.3	102.1	35.6	35.6	35.6	6.3	22.1	-5.8	21.7	21.7	36.6	8.9	22.1	22.1	40.9	21.7	21.7
Small mammals	15.0	6.8	6.0	6.0	31.0	6.5	6.5	6.5	-7.2	4.0	-4.9	3.7	3.7	6.3	2.2	4.0	4.0	5.9	3.7	3.7

Appendix Table 7 The mean percentage changes in abundance (relative to 2014 Baseline) predicted for the Eastern Area. Blue and green are major changes that represent a move towards natural: green = 30-70%; blue = >70%. Orange and red are major changes that represent a move away from natural: orange = 30-70%; red = >70%. Baseline, by definition, equals 100%.

	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Macroinvertebrates																				
Invertebrate community health	-22.7	8.6	25.1	-20.0	-29.6	0.3	0.5	20.1	0.0	0.0		14.6	-27.6	-19.5	5.8	-20.0	-20.0	-20.0	-2.6	
Invertebrate pests	-4.2	1.9	-5.1	-1.3	-1.6	0.0	0.0	8.3	0.0	0.0	0.0	5.7	-5.2	-1.3	7.4	-1.3	-1.3	-1.3	4.5	-6.5
Fish																				
Floodplain migrant fish	-7.5	1.7	15.8	-3.6	-7.3	0.0	0.0	36.3	0.0	0.0	0.0	32.0	-15.8	-3.6	33.9	-3.6	-3.6	-3.6	28.0	-18.8
River channel fish	-10.5	4.2	26.6	-5.2	-10.3	0.0	0.0	44.9	0.0	0.0	0.0	39.0	-30.0	-5.2	42.0	-5.2	-5.2	-5.2	35.2	-35.5
Demersal fish	-16.9	14.1	48.4	-12.3	-22.5	0.0	0.0	65.9	0.0	0.0	0.0	58.6	-44.3	-12.3	56.5	-12.3	-12.3	-12.3	48.0	<mark>-56.8</mark>
Channel margin fish	-16.4	8.5	33.1	-6.8	-15.7	0.0	0.0	38.3	0.0	0.0	0.0	32.7	-25.1	-6.8	33.5	-6.8	-6.8	-6.8	27.0	-32.0
Herpetofaunca																				
Crocodiles	-14.6	4.9	17.7	-4.7	-13.5	0.0	5.4	39.3	0.0	0.0	0.0	26.8	-20.6	1.5	36.4	-4.7	-4.7	-4.7	22.2	-25.7
Small reptiles	-5.0	2.4	1.3	-2.0	-2.6	0.0	0.0	33.9	0.0	0.0	0.0	19.4	-14.8	-2.0	33.3	-2.0	-2.0	-2.0	17.1	-17.0
Amphibians	-11.3	5.4	8.3	-3.2	-8.8	0.0	0.0	12.3	0.0	0.0	0.0	8.6	-12.2	-3.2	10.3	-3.2	-3.2	-3.2	6.0	-15.4
Mammals						1					1				1	4				
Hippos	21.9	7.4	14.8	59.8	14.8	9.6	9.6	42.5	-7.1	7.1	-4.0	3.9	3.9	9.1	3.8	7.1	21.6	7.1	3.9	14.9
Small mammals	-5.9	-1.2	1.6	35.7	1.6	-1.5	-1.5	20.8	-15.3	-1.7	-7.2	-4.9	-4.9	-13.2	-5.3	-1.7	9.5	-1.7	-4.9	2.2

Appendix Table 8 The mean percentage changes in abundance (relative to 2014 Baseline) predicted for the Central Area. Blue and green are major changes that represent a move towards natural: green = 30-70%; blue = >70%. Orange and red are major changes that represent a move away from natural: orange = 30-70%; red = >70%. Baseline, by definition, equals 100%.

	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base 20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Macroinvertebrates	20.5	c r	10.4	10.0									0.0	40.0	40.0		40.5	40.0		<u> </u>
Invertebrate community health	-20.5	6.5	19.1	-13.8	-20.7	0.0	0.0	0.0	14.7	0.2	0.0	14.7	-8.9	-13.8	-13.8	2.9	-13.5	-13.8	2.9	-22.5
Invertebrate pests	-1.7	0.6	-5.3	-3.0	-3.5	0.0	0.0	0.0	8.3	0.0	0.0	8.3	-4.0	-3.0	-3.0	6.1	-3.0	-3.0	6.1	-7.0
Fish	1			1																
Floodplain migrant fish	-6.6	1.7	16.5	-3.1	-6.1	0.0	0.0	0.0	36.2	0.0	0.0	36.2	-8.1	-3.1	-3.1	34.0	-3.1	-3.1	34.0	-11.1
River channel fish	-9.3	3.5	28.2	-5.3	-9.7	0.0	0.0	0.0	44.4	0.0	0.0	44.4	-14.0	-5.3	-5.3	41.1	-5.3	-5.3	41.1	-19.3
Demersal fish	-17.5	12.7	54.5	-16.2	-30.2	0.0	0.0	0.0	65.3	0.0	0.0	65.3	-20.4	-16.2	-16.2	51.9	-16.2	-16.2	51.9	-36.5
Channel margin fish	-15.4	7.1	36.4	-6.8	-15.1	0.0	0.0	0.0	37.9	0.0	0.0	37.9	-11.8	-6.8	-6.8	33.1	-6.8	-6.8	33.1	-18.6
Herpetofaunca			·	·									·				·			
Crocodiles	-12.0	1.1	17.9	-5.7	-13.4	0.0	0.0	0.0	38.0	0.0	0.0	38.0	-5.9	-5.7	-5.7	33.7	-5.7	-5.7	33.7	-11.6
Small reptiles	-3.7	1.7	3.8	-4.1	-5.2	0.0	0.0	0.0	35.0	0.0	0.0	35.0	-10.6	-4.1	-4.1	33.2	-4.1	-4.1	33.2	-14.7
Amphibians	-17.7	9.9	27.5	-15.5	-20.7	0.0	0.0	0.0	22.3	0.0	0.0	22.3	-9.4	-15.5	-15.5	8.2	-15.5	-15.5	8.2	-25.0
Mammals																				
Hippos	17.2	-2.7	10.9	10.9	10.9	38.0	0.6	38.0	-6.1	3.8	-3.0	-4.5	-4.5	5.9	-6.2	3.8	3.8	3.8	9.5	9.5
Small mammals	-11.1	-5.2	0.1	0.1	0.1	10.6	-5.8	10.6	-12.6	-2.9	-5.2	-8.4	-8.4	-17.0	-8.6	-2.9	-2.9	-2.9	-5.0	-5.0

Appendix Table 9 The mean percentage changes in abundance (relative to 2014 Baseline) predicted for the Southern Area. Blue and green are major changes that represent a move towards natural: green = 30-70%; blue = >70%. Orange and red are major changes that represent a move away from natural: orange = 30-70%; red = >70%. Baseline, by definition, equals 100%.

Macroinvertebrates	DryCalib	MidCalib	WetCalib	DevCC	DryDevCC	Base20140RS1P20SI	B2014_1P_N100RA_100S	B2014_1P_E100RA_100S	B2014_1P_C100RA_100S	B2014_1P_W100RA_100S	B2014_1P_S100RA_100S	B2014_1P_ESCRA_100S	B2014_2P_0RA_100S	DevCC_1P_N100RA_100S	DevCC_1P_E100RA_100S	DevCC_1P_C100RA_100S	DevCC_1P_W100RA_100S	DevCC_1P_S100RA_100S	DevCC_1P_ESCRA_100S	DevCC_2P_0RA_100S
Invertebrate community health	-36.0	13.5	26.6	-22.4	-35.1	0.0	0.0	0.0	0.0	0.0	22.3	17.4	-33.4	-22.4	-22.4	-22.4	-22.4	4.2	-2.5	-52.9
Invertebrate pests	-4.2	1.9	0.1	-3.2	-2.9	0.0	0.0	0.0	0.0	0.0	17.0	12.0	-4.3	-3.2	-3.2	-3.2	-3.2	14.1	8.2	-7.5
Fish																				
Floodplain migrant fish	-5.1	4.2	21.0	-3.4	-5.6	0.0	0.0	0.0	0.0	0.0	42.1	34.4	-18.6	-3.4	-3.4	-3.4	-3.4	39.6	29.4	-20.9
River channel fish	-11.0	7.5	35.8	-5.6	-10.6	0.0	0.0	0.0	0.0	0.0	51.7	43.0	-44.0	-5.6	-5.6	-5.6	-5.6	48.6	38.4	-49.7
Demersal fish	-18.1	14.0	54.8	-7.1	-14.4	0.0	0.0	0.0	0.0	0.0	71.1	61.0	-65.8	-7.1	-7.1	-7.1	-7.1	68.6	56.4	-73.1
Channel margin fish	-17.9	9.9	38.6	-6.2	-15.6	0.0	0.0	0.0	0.0	0.0	40.3	33.6	-37.9	-6.2	-6.2	-6.2	-6.2	36.8	29.1	-44.2
Herpetofaunca																				
Crocodiles	-13.3	2.0	20.9	-4.9	-12.7	0.0	0.0	0.0	0.0	0.0	41.7	28.7	-19.8	-4.9	-4.9	-4.9	-4.9	38.5	24.1	-25.7
Small reptiles	-6.9	3.6	8.8	-4.2	-5.3	0.0	0.0	0.0	0.0	0.0	41.6	24.5	-17.5	-4.2	-4.2	-4.2	-4.2	39.4	20.1	-21.4
Amphibians	-6.2	3.6	6.7	-4.6	-6.7	0.0	0.0	0.0	0.0	0.0	7.7	5.3	-7.7	-4.6	-4.6	-4.6	-4.6	4.5	1.5	-12.5
Mammals																				
Hippos	47.5	5.0	27.8	27.8	27.8	15.4	76.8	58.3	-12.2	15.6	-5.7	7.1	33.0	26.6	0.2	15.6	15.6	15.6	7.1	27.5
Small mammals	9.2	-0.8	6.0	6.0	6.0	1.0	45.7	28.2	-19.4	3.2	-5.7	-2.1	13.6	-1.8	-4.9	3.2	3.2	3.2	-2.1	7.9